527.

ON A THEOREM IN COVARIANTS.

[From the Mathematische Annalen, vol. v. (1872), pp. 625-629.]

The proof given in Clebsch "Theorie der binären algebraischen Formen" (Leipzig, 1872) of the finite number of the covariants of a binary form depends upon a subsidiary proposition which is deserving of attention for its own sake.

I use my own hyperdeterminant notation, which is as follows: Considering a function $U=(a, ..)(x, y)^{n}$, (viz. $\left.U_{1}=(a, \ldots)\left(x_{1}, y_{1}\right)^{n} \& c.\right)$, and writing $\overline{12}=\partial_{x_{1}} \partial_{y_{2}}-\partial_{y_{1}} \partial_{x_{3}}$ \&c., then the general form of a covariant of the degree m is

$$
k\left(\overline{12}^{a} \overline{13}^{\beta} \overline{23}^{\gamma} \ldots\right) U_{1} U_{2} \ldots U_{m},
$$

where k is a merely numerical factor, the indices $\alpha, \beta, \gamma, \ldots$ are positive integers, and after the differentiations each set of variables $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$ is replaced by (x, y). I say that the general form of a covariant is as above; viz. a covariant is equal to a single term of the above form, or a sum of such terms.

Attending to a single term : the sum of the indices of all the duads which contain a particular number $1,2, \ldots$ as the case may be is called an index-sum; each index-sum is at most $=n$; so that, calling the index-sums $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}$ respectively, we have $n-\sigma_{1}, n-\sigma_{2}, \ldots, n-\sigma_{m}$ each of them zero or positive: the term, before the several sets of variables are each replaced by (x, y), is of the orders $n-\sigma_{1}, n-\sigma_{2}, \ldots, n-\sigma_{m}$ in the several sets of variables respectively.

The term may be expressed somewhat differently: for writing $\nabla_{1}=x \partial_{x_{1}}+y \partial_{y_{1}}$, $\nabla_{2}=x \partial_{x_{2}}+y \partial_{y_{2}}$ \&c.- then (except as to a numerical factor) it is for a function (*) $\left(x_{1}, y_{1}\right)^{p}$ the same thing whether we change $\left(x_{1}, y_{1}\right)$ into (x, y), or operate on this function with ∇_{1}, and so for the other sets: the term may therefore be written

$$
\nabla_{1}^{n-\sigma_{1}} \ldots \nabla_{m^{n-\sigma_{m}}} k\left(\overline{12}^{\alpha} \overline{13}^{\beta} \overline{23}^{\gamma} \ldots\right) U_{1} U_{2} \ldots U_{m}
$$

being now in the first instance a function of the single set (x, y) of variables.

We may omit the operand $U_{1} U_{2} \ldots U_{m}$, and consider only the symbol

$$
k\left(\overline{12}^{\alpha} \overline{13}^{\beta} \overline{23}^{\gamma} \ldots\right) \text { or } \nabla_{1}^{n-\sigma_{1}} \ldots \nabla_{m}^{n-\sigma_{m}} k\left(\overline{12}^{\alpha} \overline{13}^{\beta} \overline{23}^{\gamma} \ldots\right),
$$

which, under either of the two forms, I represent for shortness by $[12 \ldots m]$: observe that this is considered as a symbol involving the m symbolic numbers $1,2,3 \ldots m$, even although in particular cases one or more of these numbers may be wanting from the actual expression of the symbol: thus [123] may denote $\overline{12}^{a}$, but the operand to be supplied thereto is always $U_{1} U_{2} U_{3}$.

A sum of symbols is not in general equal to a single symbol: but a single symbol can be expressed in a variety of ways as a sum of symbols: the most simple transformation-formulæ relate to three or four symbolic numbers; viz. for three such numbers, say $1,2,3$, we have

$$
\nabla_{1} \cdot 23+\nabla_{2} \cdot 31+\nabla_{3} \cdot 12=0,
$$

showing that in a symbol, which written with the ∇ 's involves $\nabla_{1} .23$, this may be replaced by its value $\nabla_{2} .13-\nabla_{3} .12$; and so in other cases.

For the four numbers 1, 2, 3, 4 we have a group of the like formulae

$$
\begin{array}{r}
-\nabla_{2} .34+\nabla_{3} .24-\nabla_{4} .23=0 \\
\nabla_{1} .34 \cdot-\nabla_{3} .14-\nabla_{4} .31=0 \\
-\nabla_{1} .24+\nabla_{2} .14 \quad-\nabla_{4} .12=0 \\
\nabla_{1} .23+\nabla_{2} .23+\nabla_{3} .31 \quad=0
\end{array}
$$

leading to

$$
23 \cdot 14+31 \cdot 24+12 \cdot 34 \quad=0
$$

which is a form not involving the ∇ 's and consequently is applicable to the transformation of invariant-symbols where the numbers

$$
n-\sigma_{1}, n-\sigma_{2}, \ldots, n-\sigma_{m}
$$

are all $=0$.
I establish the following definitions:
A symbol $[12 \ldots m]$ is proximate when each index-sum is $<n$; otherwise it is ultimate; viz. this is the case when any one or more of the index-sums is or are $=n$. We may say that the symbol is ultimate as to 1 if $\sigma_{1}=n$; and that it is ultimate as to 1,2 if σ_{1} and σ_{2} are each $=n$: and so in other cases.

A proximate symbol which has any one index-sum thereof $<\frac{1}{2} n$ is said to be inferior: thus if $\sigma_{1}<\frac{1}{2} n$ the symbol is inferior in regard to 1 ; and so if σ_{1} and σ_{2} are each $<\frac{1}{2} n$, it is inferior in regard to 1 and 2: and the like in other cases.

Observe that if a symbol is inferior then in the covariant the order exceeds the
degree by a number which is greater than $\frac{1}{2} n-1$: in fact, suppose it inferior in regard to 1 , then the order is

$$
\left(n-\sigma_{1}\right)+\left(n-\sigma_{2}\right)+\ldots+\left(n-\sigma_{m}\right),
$$

where each term after the first is at least $=1$, that is, the order is at least $=n-\sigma_{1}+m-1$; hence order - degree is at least $=n-\sigma_{1}-1$; viz. σ_{1} being less than $\frac{1}{2} n$, this is greater than $\frac{1}{2} n-1$.

Conversely, if for any symbol order-degree is $\overline{>} \frac{1}{2} n-1$, then the symbol is not inferior.

A symbol $[12 \ldots m]$ is sharp when any index is $\overline{>} \frac{1}{2} n$; otherwise it is flat; viz. this is so when each index is $<\frac{1}{2} n$. The symbol is sharp as to any particular duad or duads when the index or indices thereof is or are each of them $\overline{>} \frac{1}{2} n$.

The subsidiary theorem is now as follows: "A symbol is inferior or sharp: or it can be expressed as a sum of symbols each of which is inferior or sharp"-or what is the same thing, the only symbols which need to be considered are those which are either inferior or sharp.

Thus for the degree 1 the symbol is [1] (which is simply unity) $\sigma_{1}=0$, and the symbol is inferior.

For the degree 2 the symbol is [2], $=\overline{12}^{k}$; if $k<\frac{1}{2} n$ the symbol is inferior, if $k_{इ} \overline{\frac{1}{2} n}$ then it is sharp.

A proof is first required for the degree 3 , here $[123]=\overline{12} \overline{13}^{\beta} \overline{23}^{\gamma}(\beta+\gamma, \gamma+\alpha$, $\alpha+\beta$ each $=$ or $<n$) which may very well be neither inferior nor sharp; for instance, if $n=5$, we have $\overline{12}^{2} \overline{13}^{2} \overline{23}^{2}$, where each index being $=2$, the symbol is not sharp; and each index-sum being $=4$ the symbol is not inferior. But writing the symbol in the form $\nabla_{1} \nabla_{2} \nabla_{3} \overline{12}^{2} \overline{13}^{2} \overline{23}^{2}$, then by means of the relation

$$
\nabla_{1} \cdot 23+\nabla_{2} \cdot 31+\nabla_{3} \cdot 12=0,
$$

(or, what is the same thing, $\nabla_{1} \cdot 23=\nabla_{2} \cdot 13-\nabla_{3} .12$), the symbol becomes

$$
\begin{aligned}
& \nabla_{2} \nabla_{3} \overline{12}^{2} \overline{13}^{2} \overline{23}^{2}\left(\nabla_{2} \cdot 13-\nabla_{3} \cdot 12\right), \\
= & \nabla_{2}{ }^{2} \nabla_{3} \overline{12}^{2} \overline{13}^{3} 23-\nabla_{2} \nabla_{3}{ }_{3} \overline{13}^{3} \overline{12}^{2} \overline{23},
\end{aligned}
$$

where each term, as containing an index 3 , is sharp. To complete the reduction, observe that calling the expression $\mathfrak{A}-\mathfrak{B}$, then in the term \mathfrak{N} interchanging the numbers 2 and 3 we obtain $\mathfrak{A}=-\mathfrak{B}$, and thence $\mathfrak{A}-\mathfrak{B}=2 \mathfrak{A}$; so that the whole is $2 \nabla_{2}{ }^{2} \nabla_{3} \overline{12}^{2} \overline{13}^{3} \overline{23}$, viz. it is a multiple of $\overline{12}^{2} \overline{13}^{3} \overline{23}$.

I prove the general case, substantially in the manner used by Dr Clebsch, as follows. We assume that the theorem is proved up to a particular degree m : that is, we assume that every symbol belonging to a degree not exceeding m can be
expressed as a sum of terms each of which is sharp or inferior: and we have to prove this for the next following degree $m+1$, or writing for convenience p in place of $m+1$, (say for the degree p); that is, for a symbol

$$
\begin{aligned}
& {[12 \ldots m p],=\overline{p 1}^{\lambda_{1}} \overline{p 2}^{\lambda_{2}} \ldots \overline{p m}^{\lambda_{m}}[12 \ldots m] } \\
&=P[12 \ldots m] \text { suppose. }
\end{aligned}
$$

I write as before $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}$ for the index-sums of $[12 \ldots m$]: those of $[12 \ldots m p]$ are therefore $\sigma_{1}+\lambda_{1}, \sigma_{2}+\lambda_{2}, \ldots, \sigma_{m}+\lambda_{m}$, and (for the duads involving p) $\sigma_{p}=\lambda_{1}+\lambda_{2} \ldots+\lambda_{m}$.

If $[12 \ldots m]$ is sharp, then $[12 \ldots m p]$ is sharp, and the theorem is true.
If $\sigma_{p}<\frac{1}{2} n$, then $[12 \ldots m p]$ is inferior in regard to p; and the theorem is true.
The only case requiring a proof is when $[12 \ldots m]$ is not sharp (being therefore inferior) and when σ_{p} is $\overline{>} \frac{1}{2} n$. And in this case if any one of the indices $\lambda_{1}, \ldots \lambda_{m}$ is $\overline{>} \frac{1}{2} n$ (or say if P is sharp) then the theorem is true.

Consider the expression

$$
\overline{p 1}_{\lambda_{1}}^{\overline{p 2}^{\lambda_{2}}} \ldots \overline{p m}^{\lambda_{m}}[12 \ldots m],
$$

where $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}$ are as before the index-sums for $[12 \ldots m]$ and therefore the numbers

$$
n-\sigma_{1}-\lambda_{1}, \ldots, n-\sigma_{m}-\lambda_{m}
$$

are none of them negative.
Assume that when $[12 \ldots m]$ is inferior, and when $\lambda_{1} \ldots \lambda_{m}$ have any values such that their sum is not greater than a given value $\sigma_{p}-1$, the expression is a sum of terms each of which is inferior or sharp: we wish to show that when $\lambda_{1}+\lambda_{2} \ldots+\lambda_{m}$ has the next succeeding value, $=\sigma_{p}$, the case is still the same.

For this purpose, introducing the ∇ 's I write

$$
Q=\nabla_{1}{ }^{n-\sigma_{1}-\lambda_{1}} . . \nabla_{m^{n-\sigma_{m}-\lambda m}} \nabla_{p}{ }^{n-\sigma_{p}} \overline{p 1}^{\lambda_{1}} \overline{p 2}^{\lambda_{2}} \ldots \overline{p m}^{\lambda_{m}}[12 \ldots m] ;
$$

then supposing for a moment that λ_{1} is not $=n-\sigma_{1}$ and λ_{2} not $=0$, the expression contains the factor $\nabla_{1} \cdot p 2$, which is equal to and may be replaced by $-\nabla_{2} \cdot p 1+\nabla_{p} .12$: we have thus

$$
Q=Q^{\prime}+\Omega,
$$

where omitting the ∇ 's

$$
\begin{aligned}
& Q^{\prime}=j \overline{p 1}^{\lambda_{1}+1} \overline{p 2}^{\lambda_{2}-1} \overline{p 3}^{\lambda_{3}} . . \overline{p m}^{\lambda_{m}}[12 \ldots m], \\
& \Omega=k \overline{p 1}^{\lambda_{1}} \overline{p 2}^{\lambda_{2}-1} \overline{p 3}^{\lambda_{3}} . \cdot \overline{p m}^{\lambda_{m}} \overline{12}[12 \ldots m] \text {. }
\end{aligned}
$$

Now for Ω the sum of the indices $\lambda_{1}, \lambda_{2}-1, \lambda_{3} . . \lambda_{m}$ is $\sigma_{p}-1$, so that by hypothesis Ω is inferior or sharp: that is, the difference $Q-Q^{\prime}$ is inferior or sharp: so that to prove that Q is inferior or sharp, we have only to prove this of Q^{\prime}, where Q^{\prime} is derived from Q by increasing by unity the index of $p 1$, at the expense of that of $p 2$
which is diminished by unity. Such change is possible so long as the index λ_{1} has not attained its maximum value, $n-\sigma_{1}$ or σ_{p} as the case may be, and there is any other index $\lambda_{2}, \ldots, \lambda_{m}$ which is not $=0$: that is, we may pass from Q to Q^{\prime}, from Q^{\prime} to $Q^{\prime \prime}$ and so on; and it will be sufficient to show that the last term of the series is inferior or sharp. We thus pass from Q to R, where

$$
R=\overline{p 1}^{n-\sigma_{1}} \overline{p 2}^{\lambda_{2}-a_{2}} \ldots \overline{p m}^{\lambda_{m}-a_{m}}[12 \ldots m]
$$

and $\alpha_{2}+\alpha_{3} . .+\alpha_{m}=n-\sigma_{1}-\lambda_{1}$; or else to

$$
R=\overline{p 1}^{\sigma_{p}}[12 \ldots m],
$$

according as $n-\sigma_{1}$ is not greater or is greater than σ_{p}.
Now let $[12 \ldots \mathrm{~m}]$ be inferior; suppose it to be so in regard to 1 , that is, let σ_{1} be less than $\frac{1}{2} n$ or $n-\sigma_{1}$ greater than $\frac{1}{2} n$. Then if σ_{p} be less than $\frac{1}{2} n$ it is less than $n-\sigma_{1}$, that is, we have for R the last-mentioned form which is inferior in regard to p, viz. R is inferior; if σ_{p} is equal to or greater than $\frac{1}{2} n$, then R, whichever its form may be, is sharp as to $p 1$, viz. R is sharp. Hence in either case Q is a sum of terms which are inferior or sharp; that is, assuming the theorem for a form for which $\lambda_{1}+\lambda_{2} \ldots+\lambda_{m}$ does not exceed a given value $\sigma_{p}-1$, the theorem is true for the next succeeding value σ_{p}; or being true for the case $\sigma_{p}-1=0$, it is true generally.

Cambridge, 24 April, 1872.

