528.

ON THE NON-EUCLIDIAN GEOMETRY.

[From the Mathematische Annalen, vol. v. (1872), pp. 630-634.]
The theory of the Non-Euclidian Geometry as developed in Dr Klein's paper "Ueber die Nicht-Euklidische Geometrie" may be illustrated by showing how in such a system we actually measure a distance and an angle and by establishing the trigonometry of such a system. I confine myself to the "hyperbolic" case of plane geometry; viz. the absolute is here a real conic, which for simplicity I take to be a circle; and I attend to the points within the circle.

I use the simple letters a, A, \ldots to denote (linear or angular) distances measured in the ordinary manner; and the same letters, with a superscript stroke, \bar{a}, \bar{A}, \ldots to

denote the same distances measured according to the theory. The radius of the absolute is for convenience taken to be $=1$; the distance of any point from the centre can therefore be represented as the sine of an angle.
c. VIII.

The distance $\overline{B C}$, or say \bar{a}, of any two points B, C is by definition as follows:

$$
\text { Radius of circle }=1 \text { : }
$$

In $\triangle A B C$, sides are a, b, c :

$$
\begin{aligned}
& \text { angles " } A, B, C: \\
& O A, O B, O C \quad \operatorname{are}=\sin p, \sin q, \sin r: \\
& O A^{\prime}, O B^{\prime}, O C^{\prime} \quad " \quad \text { 承 } a, \sin b, \sin c: \\
& \Varangle B O C, C O A, A O B \quad „ \quad \alpha, \beta, \gamma \\
& \bar{a}=\frac{1}{2} \log \frac{B I \cdot C J}{B J . C I},
\end{aligned}
$$

(where I, J are the intersections of the line $B C$ with the circle); that is,

$$
e^{\bar{a}}+e^{-\bar{a}}, \text { or } 2 \cosh \bar{\alpha}=\sqrt{\frac{\overline{B I \cdot C \bar{C}}}{B J \cdot C I}}+\sqrt{\frac{\overline{B J} \cdot C I}{B I \cdot C J}},=\frac{B I \cdot C J+B J \cdot C I}{\sqrt{B I \cdot B J} \sqrt{C I \cdot C J}},
$$

where the numerator is

$$
\begin{aligned}
B I(B J-B C)+C I(B C+C J), & =B I . B J+C I . C J+B C(C I-B I) \\
& =B I . B J+C I . C J+B C^{2} .
\end{aligned}
$$

Hence taking a for the distance $B C$, and $\sin q$, $\sin r$, for the distances $O B, O C$ respectively, we have $B I . B J=\cos ^{2} q, C I . C J=\cos ^{2} r$; and the formula is

$$
\cosh \bar{a}=\frac{\cos ^{2} q+\cos ^{2} r+a^{2}}{2 \cos q \cos r}
$$

or, what is the same thing, taking α for the angle $B O C$, and therefore

$$
a^{2}=\sin ^{2} q+\sin ^{2} r-2 \sin q \sin r \cos \alpha,
$$

we have

$$
\cosh \bar{\alpha}=\frac{1-\sin q \sin r \cos \alpha}{\cos q \cos r} .
$$

In a similar manner, if $\sin \mathfrak{a}$ is the perpendicular distance from O on the line $B C$ (that is, $a \sin \mathfrak{a}=\sin q \sin r \sin \alpha$) it can be shown that

$$
\sinh \bar{a}=\frac{a \cos \mathfrak{a}}{\cos q \cos r},
$$

the equivalence of the two formulæ appearing from the identity

$$
\cos ^{2} q \cos ^{2} r=(1-\sin q \sin r \cos \alpha)^{2}-a^{2}+a^{2} \sin ^{2} \pi
$$

which is at once verified.
Next for an angle; we have by definition

$$
\bar{A}=\frac{1}{2 i} \log \frac{\sin B A I \cdot \sin C A J}{\sin C A I \cdot \sin B A J}
$$

where $A I, A J$ are the (imaginary) tangents from A to the circle; or writing for shortness $B I \& c$. instead of $B A I$, \&c. (the angular point being always at A),

$$
\bar{A}=\frac{1}{2 i} \log \frac{\sin B I \cdot \sin C J}{\sin C I \cdot \sin B J},
$$

consequently

$$
\begin{gathered}
e^{i \bar{A}}-e^{-i \bar{A}}=2 i \sin \bar{A} \\
=\sqrt{\frac{\sin B I \cdot \sin C J}{\sin C I \cdot \sin B J}}-\sqrt{\frac{\sin C I \cdot \sin B J}{\sin B I \cdot \sin C J}},=\frac{\sin B I \sin C J-\sin B J \cdot \sin C I}{\sqrt{\sin B I \cdot \sin B J} \sqrt{\sin C I \cdot \sin C J}},
\end{gathered}
$$

where the numerator is

$$
\sin B I \sin (B J-B C)-\sin B J \sin (B I+B C)=\sin B C \sin I J,
$$

or say $=\sin A \sin I J$. Moreover taking the distance $O A$ to be $=\sin p$, and the perpendicular distances from O on the lines $A B, A C$ to be $\sin \mathfrak{c}$ and $\sin \mathfrak{b}$ respectively, then if for a moment the angle $I J$ is put $=2 \omega$, we have $\sin p \sin \omega=1$: moreover

$$
\sin B I \sin B J=\sin (\omega-B O) \sin (\omega+B O)=\sin ^{2} \omega-\sin ^{2} B O ;
$$

and $\sin p \sin B O=\sin c$; that is, $\sin B I \sin B J=\frac{1-\sin ^{2} c}{\sin ^{2} p},=\frac{\cos ^{2} c}{\sin ^{2} p}$: and similarly $\sin C I \sin C J=\frac{\cos ^{2} \mathfrak{b}}{\sin ^{2} p}$; also

$$
\sin I J=-\sin 2 \omega=2 \sin \omega \cos \omega=\frac{2}{\sin p} \frac{i \cos p}{\sin p}
$$

whence the required formula

$$
\sin \bar{A}=\frac{\cos p \sin A}{\cos b \cos c} .
$$

In the same way, or analytically from this value, we have

$$
\cos \bar{A}=\frac{\cos A+\sin \mathfrak{b} \sin \mathfrak{c}}{\cos \mathfrak{b} \cos \mathfrak{c}},
$$

and thence also

$$
\tan \bar{A}=\frac{\cos p \sin A}{\cos A+\sin \mathfrak{b} \sin \mathfrak{f}} .
$$

In particular, taking the line $A C$ to pass through O, or writing in the formula $\mathfrak{b}=0$, we have $\tan B O=\cos p \tan B O=\cos p \tan \theta$; that is, $\bar{B} O=\tan ^{-1} \cdot \cos p \tan \theta$; and similarly $\overline{C O}=\tan ^{-1} \cos p \tan \theta^{\prime}$; we ought to have $\bar{A}=\overline{B O}+C O$, that is,

$$
\bar{A}=\tan ^{-1} \cos p \tan \theta+\tan ^{-1} \cos p \tan \theta^{\prime}
$$

which, observing that $\sin p \sin \theta=\sin \mathfrak{c}$ and $\sin p \sin \theta^{\prime}=\sin \mathfrak{b}$, also $A=\theta+\theta^{\prime}$, is in fact equivalent to the above formula for $\tan \bar{A}$.

Observe in particular that when A is at the centre, p is $=0$, and the formula becomes $\bar{A}=\theta+\theta^{\prime},=A$, or say for an angle at the centre, $\bar{O}=0$.

I return to the expression for $\cosh \bar{a}$; in explanation of its meaning, let the distances $\overline{O B}, \overline{O C}$ be \bar{q}, \bar{r} respectively and let the angle $\overline{B O C}$ be $\bar{\alpha}$; to find \bar{q} we have only to take C at O, that is, in the formula for $\cosh \bar{\alpha}$ to write $r=0$, we thus find $\cosh \bar{q}=\frac{1}{\cos q}$: and similarly $\cosh \bar{r}=\frac{1}{\cos r}$, whence also

$$
\begin{array}{ll}
\cos q=\operatorname{sech} \bar{q}, & \sin q=i \tanh \bar{q} \\
\cos r=\operatorname{sech} \bar{r}, & \sin r=i \tanh \bar{r}
\end{array}
$$

also, as seen above, $\bar{\alpha}=\alpha$; the formula thus is

$$
\begin{aligned}
& \cosh \bar{a}=\frac{1+\tanh \bar{q} \tanh \bar{r} \cos \bar{\alpha}}{\operatorname{sech} \bar{q} \operatorname{sech} \bar{r}} \\
& =\cosh \bar{q} \cosh \bar{r}+\sinh \bar{q} \sinh \bar{r} \cos \alpha,
\end{aligned}
$$

or, what is the same thing, it is

$$
\cos \bar{\alpha}=\frac{\cosh \bar{\alpha}-\cosh \bar{q} \cosh \bar{r}}{\sinh \bar{q} \sinh \bar{r}}
$$

viz. as will presently appear, this is the formula for $\cos \overline{B O C}$ in the triangle $B O C$.
From the above formulæ
and

$$
\cosh \bar{a}=\frac{1-\sin q \sin r \cos \alpha}{\cos q \cos r}
$$

$$
\sin \bar{A}=\frac{\cos p \sin A}{\cos \mathfrak{b} \cos \mathfrak{c}}, \quad \cos \bar{A}=\frac{\cos A+\sin \mathfrak{b} \sin \mathfrak{c}}{\cos \mathfrak{b} \cos \mathfrak{c}}
$$

and the like formulæ for $\bar{b}, \bar{c}, \bar{B}, \bar{C}$, it may be shown that in the triangle $A B C$ we have

$$
\cosh \bar{a}=\frac{\cos \bar{A}+\cos \bar{B} \cos \bar{C}}{\sin \bar{B} \sin \bar{C}}
$$

In fact, substituting the foregoing values, this equation becomes

$$
\frac{\left(1-\sin ^{2} \mathfrak{a}\right)(\cos A+\sin \mathfrak{b} \sin \mathfrak{c})+(\cos B+\sin \mathfrak{c} \sin \mathfrak{a})(\cos C+\sin \mathfrak{a} \sin \mathfrak{b})}{\sin B \sin C \cos \mathfrak{b} \cos \mathfrak{c}}=\frac{1-\sin q \sin r \cos \alpha}{\cos q \cos r}
$$ that is,

$$
\begin{gathered}
\cos A+\cos B \cos C-\sin ^{2} \mathfrak{a} \cos A+\sin \mathfrak{a} \sin \mathfrak{b} \cos B+\sin \mathfrak{a} \sin \mathfrak{c} \cos C+\sin \mathfrak{b} \sin \mathfrak{c} \\
=\sin B \sin C(1-\sin q \sin r \cos \alpha)
\end{gathered}
$$

or, what is the same thing,

$$
\begin{gathered}
\sin ^{2} \mathfrak{a}(\cos B \cos C-\sin B \sin C)+\sin \mathfrak{a} \sin \mathfrak{b} \cos B+\sin \mathfrak{a} \sin \mathfrak{c} \cos C+\sin \mathfrak{b} \sin \mathfrak{c} \\
=
\end{gathered}
$$

that is,

$$
(\sin \mathfrak{a} \cos B+\sin \mathfrak{c})(\sin \mathfrak{a} \cos C+\sin \mathfrak{b})=\sin B \sin C\left(\sin ^{2} \mathfrak{a}-\sin q \sin r \cos \alpha\right)
$$

a relation which I proceed to verify.

We may, from the formulæ

$$
a^{2}=\sin ^{2} q+\sin ^{2} r-2 \sin q \sin r \cos \alpha, \quad a \sin \mathfrak{a}=\sin q \sin r \sin \alpha, \& c
$$

but, more simply, geometrically as presently shown, deduce

$$
\begin{aligned}
& \sin \mathfrak{a} \cos B+\sin \mathfrak{c}=\frac{1}{a} \sin B \sin q(\sin q-\sin r \cos \alpha) \\
& \sin \mathfrak{a} \cos C+\sin \mathfrak{b}=\frac{1}{a} \sin C \sin r(\sin r-\sin q \cos \alpha)
\end{aligned}
$$

and thence

$$
\begin{aligned}
(\sin \mathfrak{a} \cos B+\sin \mathfrak{c})(\sin \mathfrak{a} \cos C+\sin \mathfrak{b}) & =\frac{1}{a^{2}} \sin B \sin C \sin q \sin r\left\{\begin{array}{l}
\sin q \sin r\left(1+\cos ^{2} \alpha\right) \\
-\cos \alpha\left(\sin ^{2} q+\sin ^{2} r\right)
\end{array}\right\} \\
& =\frac{1}{a^{2}} \sin B \sin C \sin q \sin r\left(\sin q \sin r \sin ^{2} \alpha-a^{2} \cos \alpha\right) \\
& =\sin B \sin C\left(\sin ^{2} \mathfrak{a}-\sin q \sin r \cos \mathfrak{x}\right)
\end{aligned}
$$

which is the equation in question. For the subsidiary equations used in the demonstration, observe that the four points O, X, A^{\prime}, B lie in a circle, and consequently that $C O \cdot C X=C A^{\prime} \cdot C B$; or multiplying each side by $\sin C$, then $C O \cdot C X \cdot \sin C=A^{\prime} K \cdot C B$, that is,

$$
\sin r(\sin r-\sin q \cos \alpha) \sin C=a(\sin \mathfrak{a} \cos C+\sin \mathfrak{b})
$$

and the other of the equations in question is proved in the same manner.
From the formula for $\cosh \bar{a}$ we find

$$
\sinh \bar{a}=\frac{1}{\sin \bar{B} \sin \bar{C}} \Delta
$$

where

$$
\Delta^{2}=-\left(1-\cos ^{2} \bar{A}-\cos ^{2} \bar{B}-\cos ^{2} \bar{C}-2 \cos \bar{A} \cos \bar{B} \cos \bar{C}\right),
$$

whence also

$$
\sinh \bar{a}: \sinh \bar{b}: \sinh \bar{c}=\sin \bar{A}: \sin \bar{B}: \sin \bar{C}
$$

and we can also obtain

$$
\cos \bar{A}=\frac{\cosh \bar{a}-\cosh \bar{b} \cosh \bar{c}}{\sinh \bar{b} \sinh \bar{c}} \& c .
$$

So that the formulæ are in fact similar to those of spherical trigonometry with only $\cosh \bar{a}, \sinh \bar{\alpha} \& c$. instead of $\cos a, \sin a \& c$. The before-mentioned formula for $\cos \bar{\alpha}$ in terms of $\bar{a}, \bar{q}, \bar{r}$ is obviously a particular case of the last-mentioned formula for $\cos \bar{A}$.

Cambridge, 11 May, 1872.

