NOTES AND REFERENCES.

518. Ribaucour, C. R., t. Lxxv. (1872), pp. $533-536$, referring to my Note remarks that the condition can be (by means of the imaginary coordinates of M. Ossian Bonnet) expressed in a simple form communicated by him to the Philomathic Society, May, 1870. I reproduce this investigation, although it is not easy to present it in a quite intelligible form. We take $p=f(x, y, z)$ to represent a family of surfaces belonging to a triply orthotomic system, and consider two neighbouring surfaces (A) and (A^{\prime}) corresponding to the values z and $z+d z ; A$ and A^{\prime} the two points where they meet the trajectories of the surfaces; $A T, A^{\prime} T^{\prime}$ the tangents to the curves of curvature of the same system at A, A^{\prime}, respectively. Then according to the remark of M. Lévy, it is to be expressed that these lines meet, and this is done by expressing that along the trajectory $A A^{\prime}$, the variation of the angle of $A T$ with the osculating plane at A is equal to the angle of the osculating planes at A, A^{\prime} respectively.

Let B^{\prime} be the spherical image of A^{\prime}, the plane $O B B^{\prime}$ is parallel to the osculating plane at A of the trajectory, and the angle of the two osculating planes measures the geodesic curvature of $B B^{\prime}$: denote this by $d \gamma$.

Let β be the angle of $B B^{\prime}$ with $B X, \theta$ the angle of $A T$ with $B X, \beta-\theta$ is the angle of $A T$ with the osculating plane at A of the trajectory: $d \beta-d \theta=d \gamma$. Introducing the symmetric imaginary coordinates x and y, we write

$$
a=\frac{d p}{\lambda^{2} d x}, \quad b=\frac{d p}{\lambda^{2} d y}, \quad c=\frac{1}{\lambda^{2}} \frac{d^{2} p}{d x d y}, \quad d s^{2}=4 \lambda^{2} \frac{d a}{d x} \frac{d b}{d y} d x d y .
$$

But $d x$ and $d y$ being the increments of x, y corresponding to $d z$ in the passage from A to A^{\prime}, then by a theorem of M . Liouville

$$
d \boldsymbol{\gamma}=d \beta-i\left(\frac{d \lambda}{\lambda d x} d x-\frac{d \lambda}{\lambda d y} d y\right)
$$

the condition thus is

$$
d \theta=i\left(\frac{d \lambda}{\lambda d x} d x-\frac{d \lambda}{\lambda d y} d y\right)
$$

c. VIII.
and the formula

$$
e^{-2 i \theta}= \pm \sqrt{\frac{d \bar{a}}{d x}} \div \sqrt{\frac{\overline{d b}}{d y}}
$$

enables this to be written in the definitive form

$$
d x \frac{d}{d x} l\left(\lambda^{4} \frac{d b}{d y} \div \frac{d a}{d x}\right)+d y \frac{d}{d y} l\left(\frac{d b}{d y} \div \lambda^{4} \frac{d a}{d x}\right)+d z\left\{\frac{d}{d z}\left(l \frac{d b}{d y}\right)-\frac{d}{d z}\left(l \frac{d a}{d x}\right)\right\}=0
$$

We have

$$
\begin{aligned}
& d x\left(\frac{1}{2} p+c\right)+d y \frac{d b}{d y} \quad+d z \frac{d b}{d z}=0 \\
& d x \frac{d a}{d x} \quad+d y\left(\frac{1}{2} p+c\right)+d z \frac{d a}{d z}=0
\end{aligned}
$$

and thence eliminating $d x, d y, d z$, we have

$$
\left|\begin{array}{cccc}
\frac{d}{d x} l\left(\lambda^{4} \frac{d b}{d y} \div \frac{d a}{d x}\right), & \frac{d}{d y} l\left(\frac{d b}{d y} \div \lambda^{4} \frac{d a}{d x}\right) & , & \frac{d}{d z} l\left(\frac{d b}{d y} \div \frac{d a}{d x}\right) \\
\frac{1}{2} p+c & , & \frac{d b}{d y} & ,
\end{array}\right|=0
$$

which defines the triply orthotomic system.

