T.21 - 1993 nr 1

BADANIA OPTYCZNE i ESR MONOKRYSZTAŁÓW CaNdAlO4

*) Ryszard Jabłoński

Obserwowano linie absorpcji Nd^{3+} w CaNdAlO₄ w 300K w zakresie 200–1 000nm i 1 000–10 000 cm⁻¹ w 30 + 300K. Ponadto zastosowano nową metodę do pomiaru anizotropii magnetycznej: ESR "spin-probing".

WSTĘP

Glinian sodowo neodymowy CaNdAlO4 (CNA) ma strukturę krystaliczną zaliczaną do grupy perovskitu. Jest on jednym z kandydatów na podłoża do epitaksji warstw nadprzewodników wysokotemperaturowych takich jak YBa-CuO lub BiPbSrCaCuO [1]. Jego struktura krystaliczna, stałe sieci, własności dielektryczne badane były w pracach [2-5].

Celem niniejszej pracy jest zwrócenie uwagi na anizotropowe własności magnetyczne materiału, które po raz pierwszy pokazano w pracy [6]. Pojawiają się one już temperaturach około 100K tj. w temperaturach typowych dla nadprzewodników wysokotemperaturowych.

POMIARY ESR

Metoda Elektronowego Rezonansu Spinowego (ESR) stosowana w niniejszej pracy wykrywa centra o własnościach paramagnetycznych, tzn. takie domieszki lub defekty, których wypadkowy spin jest różny od zera (czułość metody 10^{-13} mola przy $\Delta H = 1$ Gs), ponadto umożliwia lokalizację badanych centrów w sieci krystalicznej. Często uzyskać można dodatkową informację o jednorodności badanego monokryształu badając szerokość otrzymanych linii rezonansowych.

^{*)}INSTYTUT TECHNOLOGII MATERIAŁÓW ELEKTRONICZNYCH, ul. Wólczyńska 133, 09-919 Warszawa W przypadku CNA, jak wspomniano uprzednio, istniały podejrzenia, iż posiada on właściwości magnetyczne [5]. Ze względu na brak sygnałów ESR w czystym materiale, w pracy [6] przeprowadzono badania zmodyfikowaną metodą ESR stosowaną przez Rakvin'a [7] oraz przez autora niniejszej pracy [8] przy pomiarach warstw nadprzewodzących. Niniejsza praca jest kontynuacją badań rozpoczętych przez autora w pracy [6].

Polega ona na umieszczeniu sensora paramagnetycznego, np. DPPH (diphenylpicrylhydrazyl), na powierzchni badanego materiału i obserwowaniu jak zmienia swoje położenie linia ESR sensora pod wpływem wewnętrznego pola magnetycznego próbki. Pomiary przeprowadza się w funkcji temperatury oraz położenia badanej próbki w stosunku do zewnętrznego pola magnetycznego.

Badania przeprowadzono na spektrometrze ESP 300 f-my BRUKER, pracującym w paśmie X (9.4 GHz), niskie temperatury otrzymywano stosując przepływowy kriostat helowy f-my Oxford Instrument typ ESR 900 umożliwiający pracę w zakresie temperatur od 3.9 do 300 K. Pomiary przeprowadzano w całym zakresie mocy mikrofalowej 0.2 μ W - 200 mW (-60 - 0 dB) na próbkach o różnym kształcie : walec φ =3.5 mm, prostopadłościan 3.2 x 3.2 x 5mm lub płytki 2 x 4 x 10mm.

POMIARY OPTYCZNE

Pomiary w zakresie od 1000 do 10000 cm⁻¹ przeprowadzono na spektrometrze Fourier'a typ BRUKER FT-IR IFS 113v w temperaturach 300, 70, 30K, na próbkach o grubości 0.3, 0.5, 1mm. Natomiast badania w zakresie 11000 - 50000 cm⁻¹ (900 - 200 nm) w temperaturze 300K na spektrofotometrze typ BECKMAN UV 5240 UV-VISIBLE-NIR na próbkach o grubości <0.3mm. W obu przypadkach próbki były dwustronnie polerowane .

DYSKUSJA

Powłoka 4 f^3 jonu Nd³⁺ nie w pełni zapełniona jest elektronami. Oddziaływanie z polami zewnętrznymi jest ekranowane elektronami z powłok 5 s^2 i 5 p^2 , dlatego też występuje małe rozszczepienie od pola krystalicznego i w związku z tym położenia poziomów energetycznych różnią się nieco od poziomów jonu swobodnego. Z tych samych powodów występują też małe różnice między poziomami dla jonów Nd³⁺ wbudowanych w różne siatki [9,10] (patrz tabela 1). R. Jabłoński

 $\begin{array}{c} Rys.\ 2\\ Multiplety\ ^{4}I-W,\ X,\ Y,\ Z\\ rozczepione\ przez\ pole\ krystaliczne\ odpowiednio\ na\ 8,\ 7,\ 6,\ 5\ poziom\acute{w}\\ oraz\ poziom\ ^{4}F_{3/2}-R\ rozczepiony\ na\ R_{1},\ R_{2}. \end{array}$

Tabela 1

Poziomy energetyczne Nd ³⁺ [cm ⁻¹]					
	Grupa spektralna	[10]	[11]	Wyniki autora (300K)	
1	² H1 _{9/2}	33 112		29 761	
2	${}^{4}D_{3/2}$, ${}^{4}D_{5/2}$, ${}^{2}I_{11/2}$	22 778		28 089	
3	${}^{2}P_{1/2}$, ${}^{2}D_{5/2}$	23 041		23 255	
4	² G _{9/2} , (² DP) _{3/2}	21 276		21 367	
5	⁴ G _{9/2}	19 157		19 379	
6	$^{2}K_{13/2}, ^{4}G_{7/2}$	19 157	19 235	18 939	
7	$^{2}G_{7/2}, ^{4}G_{5/2}$	17 006	1 755	17 006	
8	² H _{11/2}	15 797	16 046	15 974	
9	⁴ F _{9/2}	14619		14619	
10	⁴ F _{7/2} , ⁴ S _{3/2}	13 295		13 335	
11	⁴ F _{5/2} , ² H _{9/2}	12 372		12 500	
12	⁴ F _{3/2}	11 025	11 726 11 695	11 415	

Badania optyczne i ESR ...

Rys. 3c Przejścia W ${}^{4}I_{9/2} - {}^{4}I_{15/2}$ dla 30K. Oznaczenia 1 - 8 w tab. 2.

Rys.1 pokazuje przejścia absorpcyjne w zakresie 200 – 1000 nm zmierzone w temperaturze pokojowej pochodzące od jonu Nd³⁺ wbudowanego w siatkę krystaliczną CNA. Liczby 1- 12 oznaczają ważniejsze poziomy, których nazwy i wartości podaje tabela 1.

Zestawiono w niej wyniki otrzymane w pracy [10] dla CNA, a w [11] dla soli magnezu z pomiarami własnymi dla CNA. Niewielkie różnice między otrzymanymi wartościami potwierdzają istotny wpływ ekranowania powłok 5s² i 5p².

Termem podstawowym jonu swobodnego Nd³⁺ jest ⁴I, co oznacza, że istnieją cztery poziomy multipletowe, dla których liczba kwantowa J równa jest

9/2, 11/2, 13/2, 15/2 w rosnącym porządku energetycznym; są one oddalone od siebie o około 2000 cm⁻¹.

Pole krystaliczne CNA rozszczepia każdy z poziomów multipletowych J na J+1/2 podpoziomów Starka, co, jak pokazuje rys.2, wynosi odpowiednio 5, 6, 7, 8 podpoziomów i każdy z nich może być rozszczepiony w polu magnetycznym (efekt Zeemana dla pasma X - 10GHz - 0.33cm⁻¹).

W temperaturach ciekłego helu odstęp energetyczny kilku lub więcej cm⁻¹ jest znacznie większy niż energia termiczna kT, wobec tego obsadzony jest tylko poziom najniższy multipletu ⁴I_{9/2}. W naszym eksperymencie wystarczyło 30K aby można było przyporządkować otrzymane widmo właściwym multipletom Y_i, X_i, W_i, R_i patrz rys.2 (poziomy energetyczne dla multipletu ⁴F_{3/2}, R₁, R₂ wzięto z pracy [10]). Natomiast widma pokazano na rys. 3abc, liczby oznaczają odpowiednie przejścia z poziomu ⁴I_{9/2}. Nazwy oraz wartości mierzonych poziomów energetycznych podaje tabela 2, gdzie zestawiono zmierzone wartości poziomów energetycznych dla trzech temperatur.

Ta	bel	a	2.

Poziomy energetyczne Nd ³⁺ w CaNdAlO ₄ [cm ⁻¹]				
* 5K		30K	70K	300K
46	R ₂	* 11 587		
F3/2	R ₁	* 11 383		
	W ₁	6 550		6 472.7
a wraphe all	W2			
	W ₃	6 221		6 256.7
	W4	6 150.6		6 156.4
	W5	6 044.6		6 931
* I 15/2	W ₆	5 920		5 940
are supply the	W7	5 900		5 898
	W8	5 807		5 792
in the second		1991 March 199		5 705
sting of the second				5 585.5
				5 491

Badania optyczne i ESR

Poziomy energetyczne Nd ³⁺ w CaNdAlO ₄ [cm ⁻¹]				
* 5K		30K	70K	300K
and strangthen is	X 1	4 243	4 223.8	4214
	X2		4 1 19.7	4 106
magnetic part	X3	4 115	4 100.4	ndor
	X4	4 088.8	4 061.8	4 019
⁴ I _{13/2}	X5	4 065.7	4 023.2	3 969
	X6	4019.4	3 965.4	3 919
a far de la	X7	3 965.4	3 919	3 870
C. Marine Marine	1. 1. 1. 2.		3 865	3 870
		1.0.2.12.2.1	3 749	3 751
		·	and and a second	3 658
	Y ₁	2 252.7	2 252.7	2 243.1
	Y ₂	2 156	2 160	2 152.4
	Y3	2 113.8	2 113.8	2 083
⁴ I _{11/2}	Y4	2 079	2 079	2 030.9
	Y5	2 036.7	2 036	1 924.8
	Y6	2 025	2 029	1 866
			1 928.7	1 739

Pokazane wyniki pomiarów optycznych są zgodne z danymi literaturowymi [9,10,11], nie tłumaczą jednak własności magnetycznych badanego kryształu. Wpływ wewnętrznego pola magnetycznego badanego kryształu na przejścia między poziomami Zeeman'a odpowiednich multipletów byłby niezauważalny (szerokość badanych linii około 50 cm⁻¹, rozszczepienie Zeeman'a < 1 cm⁻¹).

Bardziej efektywną metodą okazała się zmodyfikowana metoda ESR. Pomiary przeprowadzone na jej podstawie potwierdziły istnienie anizotropii magnetycznej. Maksymalna wartość magnetyzacji występuje dla kierunku wzdłuż osi c kryształu, a minimalna dla kierunku prostopadłego do osi c, taka sama dla osi a jak i b. Rys.4 pokazuje przesunięcie linii DPPH sensorów umieszczonych na ścianach równoległej i prostopadłej do kierunku "c" w stosunku do znacznika umieszczonego na wewnętrznej ściance rezonatora (mała linia w przeciwnej fazie). Różnice między przesunięciami sensora "szerokiego" i "wąskiego" wyniR. Jabłoński

kają między innymi z kształtu próbki. Zależności temperaturowe dla kierunku Hllc w funkcji temperatury pokazano na rys.5 dla sensora umieszczonego na płaszczyźnie równoległej do kierunku "c". Charakter zmian temperaturowych dla sensora umieszczonego na ścianie prostopadłej do osi "c" jest podobny.

Rys. 5 Położenie linii ESR sensora umieszczonego na ściance równoległej do osi "c" dla Hll c w funkcji temperatury.

WNIOSKI

Jak wykazał eksperyment ESR anizotropia magnetyczna zauważalna jest już w okolicach 100K, a więc w pobliżu temperatury krytycznej T_c dla wysokotemperaturowych warstw nadprzewodzących. Dla temperatur niższych np. 40K moment magnetyczny proporcjonalny do przesunięcia linii jest już nie do pominięcia. Może to w pewnym zakresie dyskwalifikować CNA jako materiał podłożowy.

W innych zastosowaniach np. przy budowie rezonatorów pracujących w paśmie X oraz Q w zakresie temperatur od 10 do 300K, w których stosowano CNA (wypełniał całkowicie rezonator), należy liczyć się z orientacją stosowanego materiału, na co zwracają uwagę autorzy pracy [4]. Oczywiście największy wpływ będzie widoczny w dolnych granicach stosowanej temperatury. Natomiast wydaje się iż wpływ anizotropii magnetycznej w temperaturach pokojowych jest całkowicie do pominięcia. Wszystkie pomiary optyczne i ESR przeprowadzono na kryształach otrzymanych w Zakładzie Wzrostu Materiałów Tlenkowych prowadzonym przez dr Z.Łuczyńskiego. Autor dziękuje również Pani Profesor A.Pajączkowskiej za cenne uwagi podczas wykonywania niniejszej pracy, oraz pani mgr M. Możdżonek za wykonanie pomiarów na spektrometrze Bruker IFS 113v.

BIBLIOGRAFIA

- [1] Berkowski M., Pajączkowska A., Gierłowski B., Lewandowski S.J, Sobolewski R., Gorshunov B.P., Kozlov G.V., Lyudmirsky D.B., Sirotinsky O.I, Saltykov P.A., Soltner H., Poppe V., Buchal Ch., Lubig A.: CaNdAlO₄ perovskite substrate for microwave and far-infrared applications of epitaxial high Tc superconducting thin films. Appl.Phys.Lett.57, 1990, 632
- [2] Oudalov J.P., Abdelhamid Daoudi, Joubert J.P., G.Le Flem and Hagenmuller P.: Sur une nouvelle serie d'aluminates doubles de calcium et d'elementes lanthanidiques de structure K₂NiF₄. Bull.Soc.Chim.France 10, 1970, 3408
- [3] Shannon R.D., Oswald R.A., Parise J.B., Chai B.H.T., Byszewski P., Pajączkowska A., Sobolewski R.: Dielectric constants and crystal structures of CaYAlO₄, CaNdAlO₄ and SrLaAlO₄, and deviations from the oxide additivity rule. J.Solid St.Chem. 98, 1992, 90–98
- [4] Konopka J., Wolff I.: Dielectric properties of CaNdAlO₄ at microwave frequencies. J.Appl. Phys.72, 1992, 1, 218
- [5] Byszewski P., Diduszko A., Wójcik J., Pajączkowska A.: Structure of CaNdAlO₄ and SrLaAlO₄ compounds. Crystal Properties and Preparation 1991, 36-38, 553
- [6] Jabłoński R., Byszewski P., Giersz W., Pajączkowska A., Pracka I.: Magnetic properties of CaNdAlO₄ high-Tc substrates. Materials Letters 1992, 14, 183
- [7] Rakvin B., Mahl T.A., Bhalla A.S., Sheng Z.Z and Dalal N.S.: "Measurement by EPR of the penetration depth in the high-Tc superconductors Tl₂Ba₂Ca₂Cu₃O_x and Bi₂Ca₂SrCu₂O_x. Phys. Rev. B41, 1990, 1, 769
 Rakvin B., Pozek M. and Dulcic A.: Magnetic flux inhomogenity in ceramic YBa₂Cu₃O_{7-δ} superconductors studied by EPR . Physica C170, 1990, 166
- [8] Jabłoński R.: ESR Measurements of BiCaSrCuO single crystals. RAMIS'91, 1991, 237
- [9] Kustov E.F., Petrov V.P., Petrova D.S., Udalov J.P.: Absorption and luminescence spectra of Nd³⁺ and Er³⁺ ions in monocrystals of CaYAlO₄. Phys.Stat.Sol. (a)41, 1977, 379
- [10] Ryba-Romanowski W., Gołąb S., Hanuza J., Mączka M., Pietraszko A., Berkowski M., Pajączkowska A.: Optical study of CaNdAlO₄. J.Phys.Chem.Solids 52, 1991, 9, 1043
- [11] Tinsley B.M., J.Chem.Phys. 39, 1963, 3503