PRACE PRZEGLĄDOWE

Rola konserwatywnych struktur rybosomu w procesie biosyntezy białka

Beata Dudzińska, Tomasz Twardowski Instytut Chemii Bioorganicznej, Polska Akademia Nauk, Poznań

The Function of Conservative Structural Elements of Ribosome in Protein Biosynthesis

Summary

The mechanism of protein biosynthesis is common in all organism. The structural elements of ribosomes participating in substeps of this process are conserved. The best studied fragment of L-rRNA – α -sarcin domain is identical within all leaving ogranisms. In this paper, we described main steps of polypeptide synthesis carried out by ribosomes.

Key words: elongation factor, ribosome, rRNA.

1. Wprowadzenie

Adres do korespondencji

Beata Dudzińska, Instytut Chemii Bioorganicznej, Polska Akademia Nauk, ul. Noskowskiego 12/14, 61-704 Poznań; e-mail: madej@ibch.poznan.pl

biotechnologia

3 (58) 178-188 2002

Jednym z trzech etapów biosyntezy białka u organizmów żywych jest proces elongacji, czyli wydłużania łańcucha polipeptydowego. W procesie tym biorą udział czynniki elongacyjne: EF-Tu i EF-G u prokariota, EF1 i EF2 u eukariota. Czynnik elongacyjny EF-Tu (EF1) odpowiedzialny jest za dostarczenie aminoacylo-tRNA do miejsca A na rybosomie, natomiast czynnik elongacyjny EF-G (EF2) odpowiada za translokację cząsteczek tRNA z miejsc A i P do miejsc P i E na rybosomie czemu towarzyszy przesunięcie mRNA o jeden kodon. Oba czynniki elongacyjne wykazują właściwości GTP-azy (hydroliza GTP do GDP).

Do tej pory najlepiej poznano czynniki elongacyjne organizmów prokariotycznych i właśnie dzięki tym badaniom możemy lepiej zrozumieć mechanizm elongacji łańcucha polipeptydowego.

Badania nad roślinnymi czynnikami elongacyjnymi podjąłem w katedrze kierowanej przez prof. Jerzego Pawełkiewicza w zespole prof. Andrzeja B. Legockiego na początku lat siedemdziesiątych. W tym czasie sam fakt wydzielenia czynników elongacyjnych był istotnym etapem pracy badawczej. W ciągu trzydziestu lat badania nad mechanizmami regulacji biosyntezy białka były bardzo intensywnie prowadzone. Obecnie możliwa jest dyskusja nad funkcją pojedynczych nukleotydów rybosomalnych RNA w makrokompleksie uczestniczącym w tym złożonym procesie. Z pewnością zastosowanie współczesnych technik, głównie *in silico*, umożliwi dalszy zasadniczy postęp. Uważamy, że znalezienie korelacji struktury i funkcji rybosomalnych RNA i czynników białkowych partycypujących w syntezie peptydu na rybosomie ma podstawowe znaczenie dla zrozumienia istoty mechanizmów regulatorowych biosyntezy białka.

2. Czynnik elongacyjny EF-Tu

Czynnik elongacyjny EF-Tu odpowiedzialny jest za wiązanie aminoacylo-tRNA, chroniąc w ten sposób przed hydrolizą wiązanie estrowe między aminokwasem i tRNA, oraz za dostarczenie AA-tRNA do miejsca A w rybosomie (rys. 1). Proces ten jest jednym z miejsc kontroli biosyntezy białka, ponieważ EF-Tu nie oddziałuje z formylometionylo-tRNA (fMet-tRNA_f^{Met}), co oznacza, że inicjatorowy tRNA nie będzie dostarczony do miejsca A. Formylometionylo-tRNA dostarczany jest do miejsca P w rybosomie przez czynnik inicjujący IF2.

Czynnik EF-Tu zbudowany jest z trzech domen, a domena N-końcowa (domena G lub 1) wykazuje aktywność GTP-azową, tzn. że czynnik ten oscyluje pomiędzy dwoma formami: EF-Tu-GTP i EF-Tu-GDP. Hydroliza GTP do GDP odpowiedzialna jest za oddysocjowanie EF-Tu od kompleksu aktywnego rybosomu, a tym samym umożliwia reakcję syntezy wiązania peptydowego. Uwolniony z rybosomu kompleks EF-Tu-GDP wiąże się do czynnika EF-Ts, który powoduje uwolnienie GDP i przyłączenie GTP. Powinowactwo EF-Tu do jego partnerów zmienia się wraz z hydrolizą GTP do GDP (rys. 1). Beata Dudzińska, Tomasz Twardowski

Rys. 1. Schemat mechanizmu działania czynnika elongacyjnego EF-Tu.

W badaniach wykonanych metodą mikroskopii krioelektronowej przy rozdzielczości 18 Å (1), udało się dokładniej poznać miejsca oddziaływania EF-Tu z rybosomem. Do badań użyto kompleks 70S-fMet-tRNA_f^{Met}-Phe-tRNA^{Phe}-EF-Tu-GTP. Kompleks ten uzyskano w wyniku inkubacji fMet-tRNA_f^{Met} z czynnikami inicjacyjnymi i rybosomem 70S, obsadzając w ten sposób miejsce P na rybosomie, oraz kompleksem EF-Tu-GTP-Phe-tRNA^{Phe}, obsadzając miejsce A. Zastosowanie antybiotyku kiromycyny, która opóźnia proces natychmiastowego wiązania tRNA do miejsca A (po rozpoznaniu kodonu) i hydrolizę GTP, spowodowało zachowanie konformacji rybo-

Rys. 2. Schemat miejsc oddziaływania domen czynnika elongacyjnego EF-Tu z rybosomem. (Panel lewy – mała podjednostka, panel prawy – duża podjednostka rybosomalna).

somu prawdopodobnie takiej jaką ma w trakcie wiązania EF-Tu. Wykazano, że domena 1 oddziałuje z podstawą słupka L7/L12 na obszarze podjednostki 50S. W tym miejscu znajdują się białka L10 i L11 oraz domena α-sarcyny (A2654 – A2665*), konserwatywna sekwencja 23S rRNA, znajdująca się na jego 3'-końcu. Domena 2 oddziałuje z rybosomem w pobliżu centrum dekodującego, tj. między podstawą i platformą podjednostki 30S (2). W tym regionie znajdują się białka S4, S5 i S12 oraz oddziałująca z nimi pętla 530 16S rRNA. Domena 3 połączona jest z ramieniem akceptorowym AA-tRNA (rys. 2). Prawdopodobnie wszystkie elementy strukturalne rybosomu połączone z EF-Tu pomagają w odnalezieniu właściwego miejsca oddziaływania kodon-antykodon dla AA-tRNA transportowanego przez ten czynnik elongacyjny do rybosomu.

3. Czynnik elongacyjny EF-G

Czynnik elongacyjny EF-G jest zbudowany z pięciu domen, a domena I składa się z dwóch subdomen: G (wiążąca GTP) i G'. EF-G odpowiada za proces translokacji po utworzeniu się wiązania peptydowego między aminokwasem związanym z tRNA w miejscu A i polipeptydem związanym z tRNA w miejscu P. Po przyłączeniu się do rybosomu w stanie pretranslokacyjnym kompleksu EF-G-GTP następuje przesunięcie

^{*} Wszystkie pozycje nukleotydów wymienione w tekście dotyczą E. coli.

deacylowanego tRNA z miejsca P na miejsce E, peptydylo-tRNA z miejsca A na miejsce P oraz mRNA o jeden kodon i hydroliza GTP do GDP. Po hydrolizie GTP do GDP kompleks EF-G-GDP oddysocjowuje od rybosomu (rys. 1).

Proces translokacji jest bardzo skomplikowany, a pierwszym etapem do jego poznania jest określenie miejsca przyłączenia EF-G i oddziaływań między czynnikiem a składnikami rybosomu. Jednym z miejsc wiązania EF-G na rybosomie jest fragment 23S rRNA (2644-2677), określany jako domena α-sarcyny (3). W późniejszych badaniach za pomocą metody wolnych rodników (4) wykazano inne miejsca wiązania zarówno na 23S rRNA jak i 16S rRNA. Badania te przeprowadzono dla stanu posttranslokacyjnego rybosomu, który uzyskano dodając kompleks EF-G–GTP-kwas fusydowy do rybosomów programowanych polyU i deacylowanym tRNAPhe, obsadzonym w miejscach A i P. Kwas fusydowy ma na celu "zamrożenie" struktury rybosomu w stanie posttranslokacyjnym, EF-G-GDP-kwas fusydowy nie może oddysocjować od rybosomu. W takiej strukturze rybosomu subdomena G czynnika EF-G oddziałuje z ramieniem domeny α-sarcyny, podczas gdy domena V oddziałuje z pętlą tego samego fragmentu 23S rRNA. Okazało się, że odległość między fragmentami EF-G oddziałującymi z domeną α-sarcyny (39 Å) jest porównywalna do odległości między ramieniem i petlą tej domeny określonej na podstawie badań NMR (5). Domena V EF-G oddziałuje również z innym fragmentem 23S rRNA (1070/1100).

Domena II EF-G oddziałuje z 16S rRNA w miejscu przyłączenia białka S4 (33-40, 368-370, 394, 412-417, 430-436, 445-450, 484-501, 537-539). Dokładne określenie miejsca oddziaływania EF-G z 16S rRNA okazało się w tym przypadku niemożliwe ze względu na zastosowaną metodę badawczą. Białko S4 ochrania część nukleotydów przed cięciem wolnymi rodnikami, a poddane działaniu wolnych rodników zostały tylko fragmenty otaczające białko S4.

Domena IV EF-G jest bardzo ciekawa ze względu na swój kształt: imituje ramię antykodonowe tRNA, z jednej strony oddziałuje z podjednostką rybosomalną 50S, a z drugiej z 30S. W podjednostce 50S domena IV EF-G oddziałuje z fragmentami 23S rRNA występującymi w helisach H69, H70 i H71 (1900-1960), H89 (2455-2496), H91 (2518-2546), natomiast w podjednostce 30S z pętlą 790 oraz fragmentami 954, 1210, 1230, 1338 i 1400 16S rRNA (rys. 3).

W badaniach metodą mikroskopii krioelektronowej uzyskano wizualizację położenia czynnika EF-G w rybosomie. Przy rozdzielczości 20 Å rozwiązano strukturę kompleksu 70S-(tRNA)₂-EF-G–GDP-kwas fusydowy z *E. coli* (6), w którym rybosom był w stanie posttranslokacyjnym. Okazało się, że istnieje pięć miejsc wiązania EF-G do rybosomu: trzy na podjednostce 50S, wszystkie ulokowane w podstawie słupka L7/L12 i dwa na podjednostce 30S, w miejscu połączenia platformy i szyi oraz w niższym regionie podstawy. Wiązanie EF-G wpływa na konformację słupka L7/L12 powodując jego rozwinięcie. Szczególnie ciekawa, jak się wydaje, jest pozycja wiązania domeny IV EF-G, w regionie szyi przy początku platformy, w pobliżu wiązania antykodonów tRNA w miejscu A podjednostki 30S. W późniejszych badaniach, przy rozdzielczości 17,5-18,4 Å, doprowadzono do dokładniejszego usytuowania EF-G

Rys. 3. Schemat miejsc oddziaływania domen czynnika elongacyjnego EF-G z rybosomem. (Panel lewy – mała podjednostka, panel prawy – duża podjednostka rybosomalna).

w rybosomie (7). Zastosowano trzy różne kompleksy rybosomu z EF-G: 70S-(tRNA)₂-EF-G–GDP-kwas fusydowy, 70S-(tRNA)₂-EF-G–GMPPCH₂P, 70S-EF-G–GMPPCH₂P.

Pierwszy kompleks (70S-(tRNA)₂-EF-G–GDP-kwas fusydowy) otrzymano działając EF-G-GTP na kompleks pretranslokacyjny rybosomu, po reakcji tworzenia wiązania peptydowego GDP stabilizowane było kwasem fusydowym. W tak otrzymanym rybosomie w stanie posttranslokacyjnym zaobserwowano takie samo połączenie podjednostek EF-G z rybosomem jak we wcześniejszych badaniach (6). Bardziej wyraźne stały się połączenia domeny IV EF-G z podjednostką 30S i domeny II EF-G z ramieniem podjednostki 30S. Oprócz rozwinięcia słupka L7/L12, dodatkowo znaleziono "łukowate" połączenie między C-końcem jednego z monomerów słupka L7/L12 a domeną 1 EF-G.

Drugi kompleks (70S-(tRNA)₂-EF-G–GMPPCH₂P) uzyskano przez działanie EF-G związanego z niehydrolizującym analogiem GTP (GMPPCH₂P) na kompleks 70S-(tRNA)₂, otrzymując stabilny stan pretranslokacyjny rybosomu. W reakcji tej pojawiły się jed-nak trudności: okazało się, że poziom związanego EF-G był bardzo niski (21%), a dwukrotne zwiększenie stężenia EF-G dodawanego do reakcji poprawiło ten poziom w niewielkim stopniu (36%). Na mapie uzyskanej metodą mikroskopii krioelektronowej widoczne były domeny I, II i III EF-G, ale nie można było wnioskować o pozycji domen IV i V. Skonstruowano trzeci kompleks: 70S-EF-G–GMPPCH₂P, w którym pozycja EF-G była taka sama jak w kompleksie posttranslokacyjnym, jednakże zauważono różnice w połączeniach: pomiędzy podstawą słupka L7/L12 a dome-

Rys. 4. Schemat mechanizmu działania czynnika elongacyjnego EF-G.

ną I EF-G, które było "niełukowate", a słupek L7/L12 przyjmował konformæje wydłużoną i rozszczepioną.

Obserwacje te posłużyły do zaproponowania sekwencji zdarzeń reakcji ranslokacji (rys. 4). Czynnik elongacyjny EF-G oddziałuje z rybosomem w stanie petranslokacyjnym, czyli z obsadzonymi miejscami A i P. Na tym etapie z rybosomem połączone są domeny I, II i III EF-G, natomiast połączenia domen IV i V niezostały jasno zdefiniowane. Rezultatem tych oddziaływań jest zmiana konformacji yboso-

mu: głowa podjednostki 30S przesuwa się w kierunku białka L1 podjednostki 50S o około 10 Å, ostroga podjednostki 30S obraca się ku górze w kierunku ramienia o 20°, natomiast słupek L7/L12 podjednostki 50S wydłuża się i rozszczepia na dwie subdomeny. Również tunel, w którym znajduje się mRNA ulega zmianom konformacyjnym: znacznie się poszerza zarówno wejście jak i wyjście tunelu. Wejście do tunelu utworzone jest przez oddziaływanie ramienia (pętla 530 16S rRNA) z wierzchołkiem (region 1050-1200 16S rRNA) podjednostki 30S. Wyjście tego tunelu utworzone jest między platformą i wierzchołkiem podjednostki 30S, jednak dokładna budowa nie jest znana (8). Wiązanie EF-G jest prawdopodobnie konieczne, aby wprowadzić rybosom w specyficzna konformacje o wyższym stanie energetycznym, charakteryzowaną przez naprężenia w podstawie słupka L7/L12 i w podjednostce 30S, co jest niezbędne dla aktywności GTP-azowej czynnika EF-G. Następnym etapem jest hydroliza GTP do GDP, czego rezultatem jest kolejny stan przejściowy. Słupek L7/L12 zmienia swoją postać z rozwidlonej w wydłużoną, a naprężenie w jego obrębie ustępuje, co prawdopodobnie powoduje, że domena V EF-G utrzymuje kontakt z podstawą słupka L7/L12, pomagając domenie IV zająć pozycję w pobliżu miejsca A w centrum dekodujacym podjednostki 30S. Równocześnie powstaje "łukowate" połączenie między domeną I EF-G i podstawą słupka L7/L12, a wejście tunelu mRNA poszerza się jeszcze bardziej. Kolejnym etapem jest oddysocjowanie EF-G-GDP od rybosomu, znajdującego się w stanie posttranslokacyjnym, a konformacja rybosomu wraca do stanu sprzed przyłączenia EF-G-GTP.

Na podstawie opisanych badań dowiedziono, że hydroliza GTP jest konieczna zarówno do związania wszystkich domen EF-G do kompleksu pretranslokacyjnego jak i do ułatwienia reakcji translokacji. Jednocześnie zmiany konformacyjne w obydwu podjednostkach rybosomu znacząco wpływają na wiązanie EF-G i hydrolizę GTP.

4. Zachowawcze struktury konformacyjne i sekwencyjne

Uniwersalny mechanizm procesu biosyntezy białka jest prawdopodobnie konsekwencją zachowawczego charakteru niektórych fragmentów 23S rRNA. Sekwencja nukleotydów RUA GCU GGU UC, położona w strukturze II-rzędowej między helisami H31 a H32 (801-812), w strukturze III-rzędowej rybosomu 70S znajduje się wewnątrz środkowej części podjednostki 50S. Wykazano, że m.in. ten fragment dużego rRNA tworzy tunel wyjścia polipetydu z rybosomu (9,10). Tunel wyjścia zbudowany jest z wielu fragmentów L rRNA; zazwyczaj są to pętle w strukturze II-rzędowej; zawierające się w domenach I – V, a także z nieglobularnych części białek rybosomalnych L4, L22 i L39.

Tabela 1

Sekwencja	Położenie w strukturze II-rzędowej L rRNA	Pozycja dla E. colii
RUA GCU GGU UC	H31a/H32	801-812
UAA GGU AGC	Н69	1926-1934
CUG GGG CGG	H80	2248-2256
CGU CGU GAG ACA GKU	Н93	2590-2605
AGU ACG AGA GGA	H95	2654-2665

Konserwatywne sekwencje L rRNA oraz ich położenie

R = A lub G, K = U lub G

Innym fragmentem konserwatywnym jest część helisy H70 (1926-1934), która wraz z helisami H69 i H71 wysunięta jest na zewnątrz płaszczyzny oddziaływania podjednostek. W strukturze III-rzędowej znajdują się w centrum peptydylotransferazy. Nukleotydy z helisy H69 odpowiedzialne są za wiązanie ramienia pętli D tRNA do rybosomu w miejscu A i P, natomiast nukleotydy z helisy H71 za wiązanie ramienia akceptorowego tRNA do rybosomu w miejscu A (9,10). Mimo że helisa H70 nie jest wymieniona jako fragment odpowiedzialny za wiązanie tRNA, to, jak się wydaje, bardzo intrygujące jest to, że jest to najdłuższy w tym regionie, 9-nukleotydowy fragment konserwatywny i być może on odgrywa znaczącą rolę podczas biosyntezy białka.

Kolejnymi przykładami fragmentów konserwatywnych mogą być części helis H80 (2248-2256) i H93 (2590-2605). Oba fragmenty położone są w strukturze III-rzędowej na powierzchni płaszczyzny oddziaływania podjednostek; pierwszy z nich wiąże ramię akceptorowe tRNA w miejscu P, a drugi koniec CCA tRNA w tym samym miejscu na rybosomie (9,10).

Istnieją również fragmenty konserwatywne L rRNA, które odpowiedzialne są za oddziaływania z czynnikami elongacyjnymi. Jednym z nich, najlepiej poznanym, jest domena α -sarcyny.

5. Domena α -sarcyny

Fragment 23S rRNA zawierający 12-nukleotydową sekwencję konserwatywną nazwany został domeną α -sarcyny. W pętli domeny znajdują się miejsca specyficznego cięcia toksynami: α -sarcyną (G2661/A2662) i rycyną (A2660/G2661) (rys. 5). Przecięcie pojedynczego wiązania fosfodiestrowego powoduje całkowite zahamowanie biosyntezy białka. Domena α -sarcyny wchodzi w skład centrum GTP-azowego i oddziałuje z białkami dużej podjednostki: L3 i L6 (11) oraz otoczona jest białkiem L14, które jednak nie jest w bezpośrednim kontakcie z tą domeną (12). W tym miejscu

Rys. 5. Schemat struktury domeny α -sarcyny z zaznaczonymi miejscami cięcia α -sarcyną i rycyną.

znajduja sie również białka L10 i L11 oraz podstawa słupka L7/L12 (13). Domena α -sarcyny jest regionem L-rRNA zaangażowanym bezpośrednio w proces biosyntezy białka. Jej rola polega na przyłączaniu czynników elongacyjnych (EF-Tu i EF-G), a zatem pośrednio na dostarczaniu aminoacylo-tRNA do rybosomu i translokacji. W pracach eksperymentalnych wykazano, że wiązanie EF-Tu do rybosomu ochrania cztery nukleotydy znajdujące się w domenie α -sarcyny przed działaniem wolnych rodników: G2655, A2660, G2661 i A2665 (14). Miejsce wiązania EF-Tu pokrywa się cześciowo z obszarem interakcji innego czynnika elongacyjnego EF-G. Podczas wiązania czynników elongacyjnych zaobserwowano zmiany w układzie domeny α -sarcyny względem białek L14 i L6 (12,15). Oś pętli domeny obraca się, powodując zbliżenie jej 3' i 5' końców do białka L14, co wpływa na pozycję względem białka L11 i fragmentu sekwencji rRNA z nim związanej, a wchodzącej również w skład centrum GTP-azowego. Te dwie struktury położone są po dwóch stronach słupka L7/L12 i ich ruch względem siebie wpływa na zmianę konformacji całego słupka. Domena α-sarcyny jest bardzo ważnym fragmentem L-rRNA ze względu na funkcję, jaką odgrywa podczas biosyntezy białka we wszystkich układach. Jest to uwarunkowane całkowitą zachowawczością struktury domeny α -sarcyny.

6. Podsumowanie

Biosynteza białka jest procesem złożonym, a jego dokładne poznanie okazało się trudne. Jednak w konsekwencji wielu prac mamy coraz lepsze wyobrażenie o przemianach zachodzących w rybosomie podczas poszczególnych etapów translacji. Czynniki elongacyjne są niezbędne do prawidłowego przebiegu etapu elongacji łańcucha polipeptydowego. Dotychczasowe badania pozwoliły na umiejscowienie tych czynników na rybosomie, a także doprowadziły do poznania miejsc oddziaływań z poszczególnymi składnikami rybosomu. Zaproponowano także sekwencję następujących po sobie zdarzeń i zmian konformacyjnych podczas tworzenia wiązania peptydowego. Jest jednak ciągle wiele niewiadomych dotyczących mechanizmu działania czynników elongacyjnych.

Literatura

- 1. Star H., Rodnina M. V., Rinke-Appel J., Brimacombe R., Wintermeyer W., van Heel M., (1997), Nature, 389, 403-406.
- 2. Müller F., Brimacombe R. J., (1997), J. Mol. Biol., 271, 524-544.
- 3. Mozaed D., Robertson J. M., Noller H. F., (1988), Nature, 334, 362-364.
- 4. Wilson K. S., Noller H. F., (1998), Cell, 92, 131-139.
- 5. Szewczak A. A., Moor P. B., Chang Y. L., Wool I. G., (1993), Proc. Natl. Acad. Sci. USA, 90, 9581-9585.
- 6. Agrawal R. K., Penczek P., Grassucci R. A., Frank J., (1998), Proc. Natl. Acad. Sci. USA, 95, 6134-6138.
- 7. Agrawal R. K., Heagle A. B., Penczek P., Grassucci R. A., Frank J., (1999), Nature Struct. Biol., 6, 643-647.
- 8. Frank J., Agraval R. K., (2000), Nature, 406, 318-322.
- 9. Nissen P., Hansen J., Ban N., Moor P. B., Steitz T. A., (2000), Science, 920-930.
- 10. Ban N., Nissen P., Hansen J., Moor P. B., Steitz T. A., (2000), Science, 905-920.
- 11. Uchiumi T., Sato N., Wada A., Hachimori A., (1999), J. Biol. Chem., 274, 681-686.
- 12. Gabashwili I. S., Agrawal R. K., Spahn C. M. T., Grassucci R. A., Svergun D. I., Frank J., Penczek P., (2000), Cell, 100, 537-549.
- 13. Stark H., Rodina M., Rinke-Appal J., (1997), Nature, 389, 403-406.
- 14. Miller S. P., Bodley J. W., (1991), NAR, 19, 1657-1660.
- Cate J. H., Yusupov M. M., Yusupova G. Z. H., Earnest T. N., Noller H. F., (1999), Science, 285, 2095-2104.