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Thermodynamics of a unique material structure (*) 

P. PERZYNA (WARSZAWA) 

THE OBJECT of this paper is to examine thermodynamic restrictions for a unique material strucft 
ture. The concept of the method of preparation introduced helps in this investigation. In the 
first part, the results of the paper [31] have been generalized in the case of a thermodynamic 
process. A unique material structure in a particle X of a body fJI is defined, and a general 
principle of determinism for thermodynamic processes is presented. In the second part, the 
topology for the method of preparation space and some smoothness assumptions for processes 
and response functions (functionals) are postulated. As a basis of thermodynamic requirements 
the dissipation principle in the form of the Clausius-Duhem inequality is assumed. In the third 
part it is shown that the dissipation principle implies two fundamental criteria for a theory 
of materials, namely the criterion of the selection of the response functions (functionals) and 
the criterion of the accessibility of the intrinsic states. The principle of the increase of entropy 
has been also deduced as a result of the dissipation principle. The principle of the increase of 
entropy has been formulated by considering the evolution in the intrinsic state space. It is 
proved that the principle of the increase of entropy places thermodynamic restrictions on the 
evolution introduced in the general material structure. This result is of great importance to 
the thermodynamic theory of materials. 

Celem obecnej pracy jest zbadanie ograniczen termodynamicznych dla jednoznacznej struktury 
materialnej. Jest to moZI.iwe dzi~ki koncepcji metody przygotowania. W pierwszej c~ci pracy 
uog61niono rezultaty pracy [31] dla przypadku procesu termodynamicznego. Zdefi.niowanojedno
znaczn'l struktur~ materialn'l w CZClSteczce X ciala fJI i sformulowano og6lnll zasad~ determi
nizmu dla proces6w termodynamicznych. W c~ci drugiej pracy wprowadzono topologi~ 
w przestrzeni metody przygotowania oraz warunki gladkosci dla rozpatrywanych proces6w 
i funkcji (funkcjonal6w) konstytutywnych. Jako podstaw~ ograniczen termodynamicznych 
przyj~to zasad~ dysypacyjn'l w postaci nier6wnosci Clausiusa-Duhema. W c~i trzeciej wy
kazano, ze z zasady dysypacyjnej wynikajll dwa podstawowe kryteria, a mianowicie kryterium 
doboru funkcji konstytutywnych oraz kryterium osi'lgalnosci stan6w wewn~trznych. Wypro
wadzono r6wniez zasad~ wzrostu entropii jako prosty rezultat zasady dysypacyjnej. Zasad~ 
wzrostu entropii sformulowano rozpatrujllc ewolucj~ w przestrzeni stan6w wewn~trznych. 
Wykazano, :le z zasady tej wynikaj'l ograniczenia termodynamiczne dla funkcji ewolucji wpro
wadzonej w og6lnej strukturze materialnej. Rezultat ten ma podstawowe znaczenie dla termo
dynamicznej teorii material6w. 

UeJILro Hacro~e:H pa6oTbl HBJUieTCH HCCJie,IJ;oBaHHe TepMo,IJ;HHaMWJ:ecKHX orpaHHqemm ,IJ;JUI 
0~03Ha~OH MaTepHaJILHOH CTpyi<Typbl. 3TO B03MO>KHO 6JiarO,D;apH KOHqemum MeTO,IJ;a fiO,Il;
rOTOBKH. B nepso:H qaCTH pa6oTbi o6o6~eiU>I peayJILTaTbi pa6oTbi [31] aa ~ TepMo,Il;HI:la
MWJ:ecKoro npoQecca. Onpe,D;en:eHa O,IJ;.fl03H;allllaH MaTepHaJILH;aH crpyi<Tpa B tmCTHQe X Ten:a f!J 
H c<f>opMyJIHposa:a o6~ npHHIUm npHtiHilllOCTH ,IJ;JUI TepMO,IJ;HHaMHqecKHX npoQeccos. Bo 
BTOpOH qaCTH pa60Tbl BBe,IJ;ea;a TODOJIOnm B npOCTpallCTBe MeTO,IJ;a OO,IJ;rOTOBKH, a TIUOI<e 
YCJIOBWI r.Tia,IJ;KOCTH ,IJ;JUI paccMaTpHBaeMbiX npoQeccos H onpe,D;eJIHIOIIlHX <l>Yiua.ulli C<l>YHK
QHOHaJIOB). 3a OC,flOBY TepMO,Il;HHaMWICCKHX orpaHWieH;Hif npHH;HT ,Il;HCCHnaTHBIU>IH npmuum 
B BH,IJ;e Hepaaeacraa Knayaeyca-,IlJOreMa. B TpeTLe:H 'tlaCTH noKa3a:ao, 'tlTO H3 ,IJ;HCCHnaTHBiloro 
npHHqHDa CJie,D;YJOT ,IJ;Ba OCH;OBHbiX KpHTepHH, HMei{H;O KpHTepHif llO,Il;OOpa Ollpe,D;eJIHIOIIlHX 
<f>ym<QHH H KpHTepH:H ,IJ;OCTIDKHMOCTH BHYTPei{I{HX cocro.R:H;Hif. BbiBe,IJ;eH Tome npmuum 
B03paCTa:aHH 31lTpODHH KaK npoCTOH pe3yJILTaT ,Il;HCCHnaTHBI{OrO npHHQHIIa. IlpHH;I:{HII 803-
paCTaHH.R: 3HTpOOHH C<l>opMyJIHpOBaH paCCMaTpHBaH 3BOJIIOQHIO B npOCTpallCTBe BH;yTpeltHHX 
cocro.R:H;Hif. IloKaaa:ao, 'tlTO H3 3Toro npHHQHna BLITeKaroT TepMO,Il;HilaMH'llecKHe orpam~t~emm 
,Il;JUI <f>YHHQHH 3BOJIIOQHH, BBe,IJ;eH;I{OH B o6~eH MaTepHaJILI{OH CTpyi<Type. 3TOT peayJibTaT 
HMeeT OCI{OBH;Oe 31{a'l:Jei{He ,Il;JUI TepMO,IJ;HHaMH'lleCI<OH TeOpHH MaTepHaJIOB. 

• The paper has been presented at the EUROMECH 53 COLLOQUIUM on "THERMOPLASTLC
ITY", Jablonna, September 16-19, 1974. 
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792 P. PERZYNA 

1. Introduction 

IN ALL thermodynamic considerations for dissipative materials the thermodynamic restric
tions have been investigated based on a precisely selected method of preparation together 
with rules of physical interpretation for the method of preparation assumed. 

The main objective of the present paper is to investigate thermodynamic requirements 
for a general unique material structure without introducing particular realizations of the 
method of preparation space. We need only assume the topology for the method of pre
paration space and of course, the smoothness requirements for processes and the response 
functions (functionals) considered. 

The secondary purpose of this paper is to show some connection between rational and 
classical formulations of the principles of thermodynamics. 

Particular attention is given to the discussion of the consequences of the dissipation 
principle assumed in the form of the Clausius-Duhem inequality. An attempt is made to 
examine the criterion of the selection of the response functions (functionals) and the 
accessibility criterion in the intrinsic state space and to study the principle of the increase 
of entropy. The importance of these principles for the evolution considered in the intrinsic 
state space is shown. The results obtained have fundamental implications for the thermo
dynamic theory of dissipative materials. 

2. Local thermodynamic process 

The consideration of a global thermodynamic process for a body f!J gives the following 
equations describing a local thermodynamic process in a particle X (cf. Refs. [27, 29]): 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

Div[F(t)T(t)]+eb(t) = ex(t), 

T(t) = T(t)T, 

~ tr[T(t)C(t)]-Divq(t)-e[1jl(t)+D(t)ij(t)+D(t)fJ(t)]+er(t) = 0, 

. 1 . 1 
-~(t)-#(t)rJ(t) + 

2
e tr[T(t)C(t)]- eD(t). q(t) · V#(t);;?; 0, 

where F(t) denotes the value of the deformation gradient of a particle X at time t and is 
determined by the function of motion x by the relation 

(2.5) F(t) =V x(X, t), 

if V denotes gradient with respect to the material coordinates X (the particle X is identified 
with its position X in a fixed reference configuration x, see Fig. 1), T(t) is the value of the 
Piola-Kirchhoff stress tensor of X at t, b(t) the value of the density of the body force of X 
at t, e denotes the mass density in the reference configuration x, C(t) the value of the right 
Cauchy-Green deformation tensor in X at t, q(t) is the value of the heat flux vector per 
unit surface in the reference configuration" in X at t, tp(t) denotes the value of the specific 
free energy per unit · mass in X at t, f) (t) the value of the specific entropy per unit mass 
in X at t, #(t) is the value of absolute temperature in X at t, r(t) the value of the heat 
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THERMODYNAMICS OF A UNIQUE MATERIAL STRUCTURE 793 

supply per unit mass and unit time in X at t, dot denotes differentiation with respect to
time and the operator Div is computed with respect to the material coordinates X. 

The Eqs. (2.1) and (2.2) are called Cauchy's laws of motion, the Eq. (2.3) represents 
the first local law of thermodynamics and the inequality (2.4) represents the second law 
of thermodynamics and is called the Clausius-Duhem inequality. 

DEFINITION 1. The three values 

(2.6) g = (C(t), 1J(t), V1J(t)) 

computed in a particle X at the instant of time t E [0, dp] we shall call the local, deformation
temperature configuration of X at time t. 

FIG. 1. 

A set of all possible local configurations of a particle X will be denoted by l§ and will 
be called the configuration space (the deformation-temperature configuration space). 

DEFINITION 2. The four values 

(2.7) s = (tp(t), 'YJ(t), T(t), q(t)) 

given in a particle X at timet E [0, dz] we shall call the local response of X at timet. 
A set of all possible local responses of a particle X will be denoted by f/ and will be 

called the response space. 
We shall consider processes in the configuration space l§ and processes in the response 

space 9'. 
A process (1) 

(2.8) P = (C, 1J, V#): [0, dp] ~ l§ 

will determine the change of the deformation-temperature configuration of a particle X 
in the interval of time [0, dp]. A number dp will be called the duration of the process P, 
and pt = P(O) and pi = P(dp) the initial and final values of the process P, respectively. 

e) For a thorough discussion of properties of a process and for the definitions of a segment of the 
given process P and the continuation of the process Pt with P2 , see W. NoLL [26]. 
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794 P. PERZYNA 

A process 

(2.9) Z = (1p, 'Y), T, q): [0, dz) .._. f/ 

will determine the change of the response of a particle X in the interval of time [0, dz], i.e., 
the change of the free energy, the entropy, the Piola-Kirchhoff stress, and the heat flux. 

It is important to note that if the deformation-temperature configuration g and the 
responses of a particle X at timet are known and we have the function of motion x, then 
we can determine the value ofthe body force b(t)from the first ofCauchy's laws of motion 
(2.1) and the value of the heat supply per unit mass and unit time r(t) from the first local 
law of thermodynamics (2.3). 

Let us denote by 

(2.10) 11 = {PIP: [0, dp) .._. ~} 

a set of all deformation-temperature configuration processes, and by 

(2.11) !Z = {ZIZ: [0, dz] .._. Y} 

a set of all response processes for a particle X. 
DEFINITION 3. Every pair (P, Z) e 11 x fZ such that Dom P = Dom Z and for every in

stant of time t e [0, dp) the dissipation principle in the form of the Clausius-Duhem inequality 
(2.4) is satisfied, will be called a local thermodynamic process. 

3. Method of preparation 

In a class of local thermodynamic processes we shall consider a subset which will be 
compatible with the internal constitutive assumptions describing the internal physical 
constitution of a body f4, i.e. compatible with a material (2) of a body f4. Such a subset 
of a local thermodynamic process space will be called admissible for the constitutive 
assumptions in question. 

To discuss the general relation between processes P e 11 and Z e !Z which defines 
a material structure of a body f4let us introduce a space % connected with the configura
tion space ~ in such a way that elements of the space %, which will be denoted by k e %, 
are the method of preparation of the corresponding configurations g from ~. The space :lt 
will be called the method of preparation space (3). 

A main objective of thermodynamics of continuous media is to predict the response 
<>fa particle X of a body P-1, of which physical properties are known, at the end of a de
formation-temperature process. We can give an answer to this question if, and only if, 
we have full information about particle X before the test, i.e. before a deformation-tempera
ture process. This information, which is needed for unique prediction of a future response 
·Of a particle X for every deformation-temperature process, is called the method of pre-

(2) A material as defined by W. NOLL [26] is an equivalence class of material structures, the 
equivalence being material isomorphy, cf. also Ref. [32]. 

e) For a notion of the method of preparation see Refs. (28-31], cf. also P. W. BRIDGMAN [5] and 
R. Gn.ES [19]. The precise definition of the method of preparation space for a pure mechanical process 
was first given in Ref. [31]. We generalize here the presentation from Ref. [31] to a thermodynamic process. 
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THERMODYNAMICS OF A UNIQUE MATERIAL STRUCTURE 795 

paration of the actual deformation-temperature configuration. In other words the method 
of preparation should give the additional information required to define uniquely the inter
nal state of a particle X of a body fJI during the local thermodynamic process. 

It will be shown that a method of preparation of the deformation-temperature configura
tion of a particle X is needed to describe the internal dissipation of a material. This is 
a very important feature of the notion of the method of preparation. 

Several different methods of preparation may correspond to one configuration, but it is 
very important that for a given method of preparation of the initial configuration only 
one response process corresponds to one deformation-temperature process beginning at 
this configuration. 

DEFINITION 4. A non-empty set .7( will be called the method of preparation space for 
a particle X if 

V V 1\ /\ V 9l(g, ·, P):J(f/ ~ !Ep is bijection, 
:E C'6 x :K ffi :(:EX IT)*-+~ get§ PeiT 11 :K" c:K 

where 

(3.2) (I:xll)* = {(a,P)ei:xlll V ae {P1}x.Y(pi}, 
:Kp;C:K 

(3.3) ll(/ = {P efiiP1 = g}, 

and!!' Pis a subset of!!' corresponding to the process P. 
DEFINITION 5. A set 

(3.4) I:= U {g} x.Y(q, .7((/ CJ( 
get§ 

(constructed by Definition 4) is called the intrinsic state space (4
) of a particle X. 

The element a e I: is a pair of the deformation-temperature configuration and the 
method of preparation, i.e. 

(3.5) a= (P(t),A(t)) = (g, le), get§, leet'§q, 

where by A we denote a process in the method of preparation space .7(, i.e., A: [0, dp] ~ .7(. 

We define two mappings as follows 

(3.6) 

(3.7) 

G = pr~: I:~ t'§, 

K = pr:K: I:~ :tr, 

which determine the projections from the instrinsic state space I: on the configuration 
space t'§ and on the method of preparation space .7(, respectively. 

(
4

) The intrinsic state space ~is due to Ref. [31]. It plays a similar role in the theory as the state space 
introduced by W. NoLL [26]. The difference between these two notions of state is in the conception of the 
method of preparation. The elements of the intrinsic state space are pairs. Every pair consists of the local 
configuration and its method of preparation. There is no notion of the method of preparation in NoLL's 
conception of state. The idea of splitting every element of the intrinsic state space into the local configura
tion and its method of preparation allows us to characterize precisely the intrinsic state of a particle X 
and is of great importance for the development of thermodynamics of dissipative material structure. 

(
5

) The mappings G and K were first introduced for a purely mechanical case, the former by W. NOLL 
[26] and the latter in Ref. [31]. 
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4. General principle of determinism 

The notion of a method of preparation is connected with a general principle of deter
minism in mechanics of continua. The principle of determinism can be stated as follows: 
Between an initial deformation-temperature configuration, its method of preparation, a de
formation-temperature process beginning at this configuration and a response process of 
a particle X, there exists a functional relationship. This functional relation will describe 
a unique material structure in a particle X of a body fA. 

According to Definition 4 there exists a mapping 

(4.1) 91:(~ X TI)* --+ !l'. 

The mapping ~ is called the constitutive mapping. 
The constitutive mapping 91:(~ x TI)* --+ !l' has the property as follows 

(4.2) 1\ 1\ { (abP) e (~ x TI)*, i = 1, 2 A 91(a1 , P) = 91(a2 , P)} 
11t.l1zEl: Peiig 

G{al)=G<az) 

DEFINITION 6. The system (~, ll, ~, 91) is called a unique material Structure in a particle 
X of a body f!4. 

The constitutive mapping 91 with the property (4.2) expresses a general principle of 
determinism for dissipative continuum body. 

A general principle of determinism: A unique response process Z e !l' corresponds 
to every deformation-temperature process Pen beginning at the given intrinsic state C1 E ~. 

This statement of a principle of determinism is very general. It concerns thermodynamic 
processes and is valid for the arbitrary method of preparation space introduced. 

Let us assume that a unique material structure is given. If we have the initial intrinsic 
state and the deformation-temperature process beginning at this intrinsic state we are 
interested then in the intrinsic state at the end of the process. The problem will be solved 
if the mapping between the intrinsic state at the end of the deformation-temperature process 
and the initial intrinsic state be given. 

DEFINITION 7. /t is said that the mapping 

(4.3) e:(~ x TI)* --+ ~ 

is the evolution function, if for every pair (a, P) E (~ x TI)* the equation 

(4.4) 

is satisfied, where [91( a, P)]~ denotes the final value of the response process Z = 91( a.; P) 
and P{o> is the deformation-temperature process of duration zero. 

In practical applications it will be convenient to have mapping from the intrinsic state 
space~ into the response space!/. So, it is useful to define a new mapping 

(4.5) 

by the expression 

(4.6) 
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The principle of determinism can be expressed by the relation (6
) 

(4.7) 8 = Z(t) = S(e(a0 , P)) = S(a) 

for every ( a0 , P) E (~ x 11)*, see Fig. 2. 
This principle of determinism can be stated as follows: 
A unique value of the response 8 E f/ (i.e. unique values of the free energy 1p(t), the 

entropy 1J(t), the Piola-Kirchhoff stress tensor T(t)and the heat flux vectorq(t)) corresponds 
to every intrinsic state a e ~. 

The mapping S is called the response function. 

The system(~, 11, ~, S, e) is also a unique material structure in a particle X. 

FIG. 2. 

Z(t)=s={rp(t}, T?(t), T(t~ q{t)) 
==[!R.(CJO, P[a,tJ)]f=s(cr) 

A A 

The response function S represents the free energy response function ':P', the entropy 

response function N, the stress response fpnction T and the heat flux response function 

Q, i.e. 

(4.8) s = {'Y, N, i, Q}. 
DFFINITION 8. A local thermodynamic process compatible with a unique material structure 

will be called an admissible process. 

A 

(
6

) It is noteworthy that both mappings ~and S are similar to those introduced by W. NoLL [26] in 

a purely mechanical consideration but in the present theory, as in Ref. [31], the mappings e and S are gener
ated by the constitutive mapping 9t 
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5. Consequences of the dissipation principle 

According to Definition 3, every local thermodynamic process has to satisfy the dissi
pation principle in the form of the Clausius-Duhem inequality (2.4). 

Using Definition 8 of an admissible process we may state now the main problem 
of the thermodynamics of materials C): In an assigned class of processes and within an 

assigned class of response functions (functionals) S = {lJr, N, T, Q} to determine those 
that satisfy the Clausius-Duhem inequality (2.4). 

Thus, it can be said that the main problem of the thermodynamics of materials is to 
determine an admissible thermodynamic process. 

It is noteworthy that the answer to the main problem of the thermodynamics of ma
terials depends on the topology assumed for the method of preparation space. 

It will be proved that the dissipation principle will imply two fundamental criteria in 
the theory of materials. 

1. The criterion of the selection of response functions (functionals) S = {7, N, T, Q} (8
). 

2. The criterion of the accessibility of an intrinsic state a from the given initial intrinsic 
state a0 (

9
). 

Both these criteria are main consequences of the dissipation principle. 

6. Topological and smoothness assumptions 

To investigate restrictions placed on a local thermodynamic process by the dissipation 
principle we assume: 

1. The space of the method of preparation ~ is complete metrizable topological 
space (1°). 

2. Processes P e TI considered in the configuration space f§ are continuously dif-

ferentiable, i.e. for every time t e [0, dp] exists the derivative ~ P ( r) IT=t = P(t ). The 

derivative P(t) determines the rate of change of the process P at t. 
3. Processes A considered in the method of preparation space ~ are continuously 

differentiable, i.e. for every timet e [0, dp] exists the derivative ~-A(r)IT=t = A(t). The 

derivative A(t) determines the rate of change of the process A at t. 

(')Cf. B. D. CoLEMAN and W. NoLL [10] and C. TRUESDELL [36]. 

(
8

) It seems that C. EcKART [17] was the first who understood properly the consequences of the Clausius
Duhem inequality for constitutive assumptions. Further development of his idea was done by B. D. CoLEMAN 
and W. NoLL [10], B. D. CoLEMAN [11], B. D. CoLEMAN and M. E. GURTIN [12], B. D. CoLEMAN and 
V. J. MIZEL [13] and B. D. CoLEMAN and D. R. OWEN [14]. 

(
9

) The exploration of similar criterion to this has been recently taken, in another connection, by 
B. D. CoLEMAN and D. R. OWEN [15]. 

(1°) For the exact meaning of the mathematical terms introduced pbase consult the book by J. L. 
KELLEY [20]. 
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4. The rate A(t) for t E [0, dp] ~s idependent of the rate P(t), i.e. we may assume that 

(6.1) A(t) = &(a) = &(P(t), A(t)), t E [0, dp]. 

Under this assumption the rate of change of the process A in the method of preparation 
space :£ is completely determined by the actual intrinsic state a E L. 

Two interesting cases can be considered: 

(i) A(O) = k0 e:f, 

(ii) A(- 00) = k_ 00 E :/{. 
(6.2) 

The differential equation (6.1) is called the evolution equation in the method of preparation: 
space :£ and together with appropriate initial value (i) or (ii) for the given deformation
temperature process P: [0, dp] ~ t'§ completely determines the evolution of internal states,.. 
i.e. the evolution function e: (L X TI)* ~ ~. 

The differential equation (6.1) with the initial value (i) leads to the unique material 
structure with internal state variables, and the initial value problem (6.1) and (ii) is iso
morphic with the unique material structure with memory (1 1 

). 

5. A real value free energy response function 'fr defined on L C t'§ x :1{ is continuously 

differentiable on L with respect to the topology in L, i.e. the gradients Op<'>'fr and oA<t>V" 
exist and are continuous functions on ~. This property is called a chain rule property. 

The deformation-temperature configuration space t'§ has properties of a thirteen-dimen
sional vector space --r 13 , hence it is a complete normed space (a topology oft'§ is implied 
by a natural norm). 

The intrinsic state space L with a topology implied by the topology assumed for % 
and the natural topology of t'§ will be denoted by 5!J. 

For future applications it will be useful to assume stronger topology for :1{, namely 
that:£ is a complete normed space (a Banach space). Since~ is also a complete normed 

space, hence L will have properties of a complete normed space denoted by §J. 
In the following we shall assume that the response functions (functionals} 

S = {~, N, T, Q} are defined on a set~ (or~). 
To state precisely, a chain rule property for the free energy response function (func-. 

tional) 'Y is assumed with respect to the topology of §!} (or ~). 
It follows from the above assumptions that in each admissible local thermodynamic 

process 

.(6.3) 
d A A • A • 

1jl(t) = d1: 'Y(P(T), A(.,;))IT=t = aP<r>'Y< ·) * P(t)+oA<r>'Y(.) o A(t), 

~here 

(6.4) op<r>lf( ·) * P(t) = tr[oq;>'f( · )C(t)] + o0<t>"P( • )&(t) + ovocr>lf( ·) · VfJ(t), 

and oA<r>'ir( ·) o A(t) denotes a linear function (functional) with respect to A(t). The 

result of oA(t)lf( ·) o A(t) does depend on the realization of the method of preparation 
space :1{ and on the topology induced in :/{. 

(
11

) Cf. W. Kos!NSKI and W. Womo [21] and M. J. LEITMAN and V. J. MIZEL [25]. 
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To make clear our reasoning let us consider two examples. 

1. If :K is the past history function space then OA(r)'i'( ·) o A(t) = <5lf{ · IA(t)) denotes 
the Frechet derivative (in a Banach function space), i.e. the linear functional with 

respect to A(t). This realization of the method of preparation space leads to the unique 
material structure with memory (cf. Ref. [22]). 

2. If :K is a finite-dimensional vector space then aA<r>'ir( ·) o A(t) = aA<r>lf( ·) · A(t) 
denotes the scalar product in :K. This realization of the method of preparation space leads 
to the unique material structure with internal state variables (cf. Ref. [22]). 

7. Constitutive restrictions 

The dissipation principle requires that (2.4) hold at every time t E [0, dp]. We may 
use the Eqs. (4.7), (4.8) and (6.3) to write (2.4) in the form 

(7.1) 
1 " . " . 

2
(! tr { [T(t)- 2e Oqr>'fl C(t)}- [1}(t) + oD<t>'fl IJ(t) 

"--·- " . 1 
- OvD(t)'Y. VIJ(t)- OA(t)'Y 0 A(t)- eiJ(t) q(t). VIJ(t) ';:!; 0. 

Since C(t), h(t) and V D(t) can be selected independently and may be arbitrarily 
chosen (1 2

) hence the inequality (7.1) yields the results as follows 

ove<r>'Y = 0, T(t) = 2eoqr>lJr( · ), 1](1) = -oo<t>ir( · ), 

(7.2) 
A • 1 A 

- aA<r>'Y( ·) o A(t)- eD(t) Q(a) ·V IJ(t) ";::; o, 

satisfied at every time t E [0, dp]. 
Let us introduce the following notations 

(7.3) 
A 1 A • 

i(a) = - IJ(t) aA(t)'Y(.) 0 A(t). 

The mapping J: I: -+ R + (where R + denotes the set of non-negative real numbers) is 

called the general dissipation function, and the value d(a) denotes the value of the general 
dissipation function at the intrinsic state a E I:. 

The mapping i: I:-+ R (the set of real numbers) is called the internal dissipation 

function, and i"( a) is its value at the intrinsic state a E I:. 

(
12

) To prove this statement we can use a similar procedure to that of B. D. CoLEMAN and M. E. 
GURTIN [12] and K. C. V ALANIS [37] for a material with internal state variables, or that of C. C. W ANG and 
R. M. BoWEN [38] for a non-linear material with quasi-elastic response. 

http://rcin.org.pl



THERMODYNAMICS OF A UNIQUE MATERIAL STRUCI'URE 801 

The inequality (7 .2)6 is called the general dissipation inequality and using the Eqs. 
(7.3) 1 and (7.3h it can be written in the form 

(7.4) 
A A 1 A 

d(a) = D(t)i(cr)- eD(t) Q(a) · VD(t) ~ 0. 

The four results (7.2) 1 to (7.2)4 express the criterion of the selection of the response 

functions (functionals) S = {'F, N, T, Q} which can be stated as follows: 

Choosing the free energy response function 'f" which is independent of the actual 

temperature gradient V D(t) and the heat flux response function Q such that the general 
dissipation inequality (7 .4) is satisfied at every instant of time t e [0, dp] or for every intrin
sic State (1 determined by the relation (1 = e( Go, p[O,t]), Where Go denoteS the initial in
trinsic state and P[O,tJ the segment of the given deformation-temperature process P, the 

response stress function T and the response entropy function N are uniquely determined 
by the relations (7 .2h and (7 .2h . 

It is noteworthy that for the case q(t) = 0 or VD(t) = 0 for t E [0, dp] the general 
dissipation inequality (7.4) takes the particular form 

(7.5) 
A 1 A • 

i(a) = - {}(t) DA(r)'Y( ·) o A(t) ~ 0, t e [0, dp] 

which is called the internal dissipation inequality. 
We can return now to the discussion of the notion of the method of preparation as such 

information which is required for the description of the internal dissipation of an inelastic 
material. The expression (7.3h which defines the value of the internal dissipation at the 
intrinsic state a shows that full information given in the method of preparation, i.e. A(t) = le 

and the evolution equation A(t) = a( a), essentially determines the internal dissipation for 
this intrinsic state. 

If there is no need to introduce any information in the method of preparation this case 
corresponds to an ideal material without internal dissipation - this ideal material is called 
a perfectly elastic material. 

8. Accessibility criterion 

Let us assume that the initial intrinsic state a0 e ~ is known, and let us choose an 
arbitrary intrinsic state a* e ~' see Fig. 3. The question arises whether the intrinsic state 
a* is accessible from the initial intrinsic state a 0 , or in other words, what is the condition 
of accessibility of a* from a0 • 

If the intrinsic state a* is accessible from the initial intrinsic state a 0 , then the deform
ation-temperature process P has to exist which generates the process in the method of 
preparation space A: [0, dp] -+ .Yt' such that 

(8.1) a0 = (P(O), A(O)) = (g0 , lc0 ) and a* = (P(dp), A(dp)) = (g*, le*), 

and for every instant of time t e [0, dp] the dissipation principle is satisfied. 

8 Arch. Mech. Stos. nr 5-6/75 

http://rcin.org.pl



802 P. PERZYNA 

The response of a material corresponding to the intrinsic state u* is determined by the 
constitutive relation 

(8.2) 

Since the deformation-temperature process P is assumed to be known and this process 
generates a process A in the method of preparation space :K, hence the dissipation principle 
will give fundamental restriction on the process A: [0, dp]-+ :K. 

The dissipation principle requires that for a given process P such a process A: [0, dp]-+ :K 
be chosen that the general dissipation inequality 

(8.3) d(u) ~ 0, u = (P(t), A(t)) = (g, k) 

for every instant of time t e [0, dp] must be satisfied. 

oo=(P(o}, A(o)) 
=(go,ko} 

FIG. 3. 

This is the second fundamental criterion obtained as the result of the dissipation prin
ciple. 

Accessibility criterion: An arbitrary intrinsic state u* e ~ is accessible from the initial 
intrinsic state u 0 e ~ if there exists a pair of processes (P, A): [0, dp] -+ l'§ x :K such that 
the following conditions are satisfied: 

(P(O), A(O)) = (g0 , k0) = u0 , (P(dp), A(dp)) = (g*, k*) = u*, 

(8.4) 
A 1 A O 1 A 

d(P(t), A(t)) = - IJ(t) oA<t>'Y( ·) o A(t)- eiJ(t) Q(u) ·V D(t) ~ o 

for every instant of timet e [0, dp]. 
It is noteworthy that the accessibility criterion places some restrictions on the evolution 

function e: (~X IT)* -+ ~. Indeed, if we assume the deformation-temperature process p 
such that the intrinsic state u* = e( Uo' P) be accessible from the initial intrinsic state Uo 
by this process P, then the condition (8.4)2 represents the restriction on the evolution func
tion e. 

This conclusion is obvious if the condition (8.4h is written in the form 

(8.5) 
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9. Principle of the increase of entropy 

Let us consider the intrinsic state space :I:. In this space we choose the initial intrinsic 
state rT 0 and an arbitrary intrinsic state u. Let us assume that there exists a pair of processes 
(P, A): [0, dp] -+ r§ x :11" such that 

(9.1) (P(O), A(O)) = (g0 , k0) = u0 and (P(t), A(t)) = (g, le) = u. 

The pair of t_he processes (P, A) is represented in the intrinsic state space :I: by the curve !l', 
see Fig. 4. 

FIG. 4. FIG. 5. 

We define the curvilinear integral along the curve !l' which due to natural time para
metrization can be written in the form 

t 

(9.2) ,l(u0 , u) = J d(P("r), A(T))dT = J d(e(u0 , P[0 ,T1))dT, t e [0, dp]. 
0 0 

In a similar way we can define the integral 

t t 

(9.3) J(u0 , u) = J i(P(r), A(T))dT = J i(e(u0 , P£0 ,T1))dT, t e [0, dp]. 
0 0 

The integrals ,/(a0 , a) and J(a0 , a) are called the general dissipation integral and the 
internal dissipation integral, respectively. 

Let us consider in the internal state space~ two states a a and ab which lie on the curve 
!l', see Fig. 5. The state a a corresponds to the instant of time t" e [0, dp] and the state ub 

to the instant tb e [0, dp], and of course tb > ta. 

The dissipation principle requires that 

(9.4) 

Principle of the increase of entropy: For all Ua, ab e :I:, ab is accessible from Ua if, and 
only if, the general dissipation integral of ab is not less than that of a". 

8* 
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It is important to note that the internal dissipation integral (9.3) is a measure of the 
irreversibility of a local thermodynamic process for the case when q(t) = 0 or V {}(t) = 0 
fortE [0, dp] and may be interpreted as the empirical entropy (1 3

) or as the irreversibility 
function (1 4

). 

If we assume this interpretation and the condition q(t) = 0 fortE [0, dp] we can state 
the principle of increase of entropy in the form as follows (cf. P. RASTALL [35]): For all 
a a, ab E ~.ab is adiabatically accessible from a a if, and only if, the empirical entropy of ab 
is not less than that of a a. 

The principle of the increase of entropy was first formulated by M. PLANCK [33, 34]. 

10. Discussion 

It is worth pointing out some features of the thermodynamics of materials presented. 
We started from the dissipation principle in the form of the Clausius-Duhem inequality 
and we deduced two fundamental criteria for the · thermodynamics of materials, namely 
the criterion of the selection of the response functions (functionals) occurring in the 
mathematical statement of the general principle of determinism and the accessibility 
criterion in the intrinsic state space ~. 

The accessibility criterion is connected with the Caratheodory formulation of the 
second law of thermodynamics e 5). 

As a consequence of the dissipation principle we also deduced the principle of the in
crease of entropy. Appropriate interpretation of the general dissipation integral (or the 
internal dissipation integral) led to the very old statement of the second law of thermo
dynamics first presented by M. PLANCK (1 6

). 

It is very important to stress that all considerations concerned a general unique material 
structure before a particular realization of the method of preparation was given. 

References 

1. B. BERNSTEIN, Proof of Caratheodory's local theorem and its global application to thermostatics, J. Math. 
Phys., 1, 222-224, 1960. 

2. J. B. BoYLING, Caratheodory's principle and the existence of global integrating factors, Commun. Math. 
Phys., 10, 52-68, 1968. 

(1 3 ) The clear meaning of the empirical entropy can be found in the papers by H. A. BuCHDAHL 
[6, 7], cf. also H. A. BUCHDAHL and W. GREYE [8], L. B. COOPER [16], P. RAsTALL [35] and J. B. BoYLING 
[2, 3]. 

(14 ) The concept of the irreversibility function was introduced by R. GILES [19]. 

(1 5) Cf. C. CARATHEODORY [9]. Caratheodory's formulation of classical thermodynamics has been 
developed further by M. BORN [4], H. A. BucHDAHL [6, 7], G. FULK and H. JUNo [18], B. BERNSTEIN [1], 
H. A. BUCHDAHL and W. GREVE [8), P. T. LANDSBERG [23, 24), J. L. COOPER [16), P. RASTALL [35] and 
J. B. BoYLING [2, 3]. 

(1 6) Cf. M. PLANcK [33, 34]. Extension of Planck's idea has been done by H. A. BucHDAHL [6], P. RAS
TALL [35) and J. B. BOYLING [2, 3). 

http://rcin.org.pl



THERMODYNAMICS OF A UNIQUE MATERIAL STRUCTURE 805 

3. J. B. BOYLING, An axiomatic approach to classical thermodynamics, Proc. Royal Soc. London, A329, 
35-70, 1972. 

4. M. BoRN, Kritische Betrachtungen zur traditionellen Darstellung der Thermodynamik, Physik. Zeitschr., 
22, 218-224, 249-254, 282-286, 1921. 

5. P. W. BRIDGMAN, The thermodynamics of plastic deformation and generalized entropy, Rev. Modern 
Phys., 22, 56-63, 1950. 

6. H. A. BUCHDAHL, A formal treatment of the consequences of the second law of thermodynamics in Cara
theodory's formulation, Zeitschrift Phys., 152, 425-439, 1958. 

7. H. A. BUCHDAHL, Entropy concept and ordering of states. I, Zeitschrift Phys., 168, 316-321, 1962. 
8. H. A. BuCHDAHL and W. GREYE, Entropy concept and ordering of states. 11, Zeitschrift Phys., 168, 

386-391, 1962. 
9. C. CARATHEODORY, Untersuchungen Uber die Grundlagen der Thermodynamik, Math. Annalen, 67, 

355-386, 1909. 
10. B. D. COLEMAN and W. NoLL, The thermodynamics of elastic materials with heat conduction and visco

sity, Arch. Rat. Mech. Anal., 13, 167-178, 1963. 
11. B. D. CoLEMAN, Thermodynamics of materials with memory, Arch. Rat. Mech. Anal., 17, 1-46, 1964. 
12. B. D. COLEMAN and M. E. GURTIN, Thermodynamics with internal state variables, J. Chem. Phys., 47, 

597-613, 1967. 
13. B. D. COLEMAN and V. J. MIZEL, A general theory of dissipation in materials with memory, Arch. Rat. 

Mech. Anal., 27, 255-274, 1968. 
14. B. D. CoLEMAN and D. R. OWEN, On the thermodynamics of materials with memory, Arch. Rat. Mech. 

Anal., 36, 245-269, 1970. 
15. B. D. CoLEMAN and D. R. OWEN, A mathematical foundation for thermodynamics, Arch. Rat. Mech. 

Anal., 54, 1-104, 1974. 
16. J. L. B. COOPER, The foundations of thermodynamics, J. Math. Anal. Appls., 17, 172-193, 1967. 
17. C. ECKART, The thermodynamics of irreversible processes, Phys. Review, 58, 267-269, 269-275, 

919-924, 1940; 73, 373-382, 1948. 
18. G. FALK und H. JUNG, A.xiomatik der thermodynamik, Handbuch der Physik, 111/2, Springer 1959, 

pp. 119-175. 
19. R. GILES, Mathematical foundations of thermodynamics, Pergamon Press, Oxford 1964. 
20. J. L. KELLEY, General topology, Van Nostrand, New York 1955. 
21. W. Kos!NSKI and W. WoJNo, Remarks on internal variable and history descriptions of material, Arch. 

Mech., 25, 709-713, 1973. 
22. W. KosiNSKI and P. PERZYNA, The unique material structure, Bull. Acad. Polon. Sci., Serie Sci. Techn., 

21, 655-662, 1973. 
23. P. T. LANDSBERG, Foundations of thermodynamics, Rev. Modern Phys., 28, 363-392, 1956. 
24. P. T. LANDSBERG, Main ideas in the axiomatics of thermodynamics, Pure and Applied Chemistry, 22, 

215-227, 1970. 
25. M. J. LEITMAN and V. J. MIZEL, On fading memory spaces and hereditary integta/ equations, Arch. Rat. 

Mech. Anal., 55, 18-51, 1974. 
26. W. NoLL, A new mathematical theory of simple materials, Arch. Rat. Mech. Anal., 48, 1-50, 1972. 
27. W. NOLL, Lectures on the foundations of continuum mechanics and thermodynamics, Arch. Rat. Mech. 

Anal., 52, 62-92, 1973. 
28. P. PERzvNA, A gradient theory of rheological materials with internal structural changes, Arch. Mech., 

23, 845-850, 1971. 
29. P. PERzYNA, Thermodynamic theory ofrheological materials with internal structural changes, Symposium 

franco-polonais, Problemes de la Rheologie, Varsovie 1971, PWN, Varsovie 1973, pp. 277-306. 
30. P. PERZYNA, Physical theory ofviscoplasticity. Bull. Acad. Polon. Sci., Serie Sci. Techn., 21, 123-139, 

1973. 
31. P. PERzvNA and W. KosrNSKI, A mathematical theory of materials, Bull. Acad. Polon. Sci., Serie Sci~ 

Techn., 21, 647-654, 1973. 
32. P. PERZYNA, On material isomorphism in description of dynamic plasticity, Arch. Mech., 27, 473-484, 

1975. 

http://rcin.org.pl



806 P. PERZYNA 

33. M. PLANCK, Ober das Prinzlp der Vermehrung der Entropie, Wied. Ann., 30, 562-582; 31, 189-203; 
32,462-503, 1887. 

34. M. PLANCK, Vorlesungen iJber Thermodynamik, Elfte Auflage, Berlin 1964 (Erste Auflage 1897). 
35. P. R.ASTALL, Classical thermodynamics simplified, J. Math. Phys., 11, 2955-2965, 1970. 
36. C. TRUESDELL, Rational thermodynamics, McGraw-Hill, New York 1969. 
37. K. C. VALANIS, Unified theory of thermomechanical behavior of viscoelastic materials, Symp. Mech. 

Behav. Mater. Dyn. Loads, San Antonio 1967, Springer, pp. 343-364, New York 1968. 
38. C. C. W ANG and R. M. BoWEN, On the thermodynamics of non-linear materials with quasi-elastic res

ponse, Arch. Rat. Mech. Anal., 22, 79-99, 1966. 

POLISH ACADEMY OF SCIENCES 
INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH. 

http://rcin.org.pl




