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Spatially cognitive media C). 11. One-dimensional theory C) 

A. J. A. MORGAN(3) and Y. S. PAN(4) (LOS ANGELES) 

UNDER certain hypotheses a general constitutive equation for media with spatial cognitivity 
is cast into a form suitable for the solution of (referential-description) problems posed for 
one-dimensional continua of this type. Moreover, this deduction-mode automatically yields an 
expression for the initial-stress distribution within such one-dimensional bodies. Two exp1icit 
examples are given; one of these illustrates the ext'!nt of an "edge effect" as a function of 
a spatial influence parameter a E (0, 1]. 

Czyni'l:c niekt6re hipotezy wyprowadzono og6lne r6wnanie konstytutywne dla osrodk6w z prze
strzenn'l: swiadomosci'l: w formie wygodnej do rozwi'l:zywania zagadnien, postawionych dla 
tego typu jednowymiarowego kontinuum. Stosowany PfZY tym spos6b dedukcji automatycznie 
spelnia wyrazenie dla rozkladu napr~zen pocz'l:tkowych dla wspomnianych wyi:ej cial jedno
wymiarowych. Przytoczono dwa proste przyklady; jeden z nich ilustruje miar~ "efektu kra
w~dziowego" jako funkcji przestrzennego parametru wplywu a E (0, 1] . 

.UenaH HeKOTOpbie rHIIoTe3hi BhiBeAeHo o6I.Qee orrpeAemnoi.Qee ypaBHeHHe wrn cpeA c rrpo
crpaHCTBeHHoii II03HaBaTCJibHOCTbiO B $opMe llpHrOAHOH AJIH pewemm 3aAaq IIOCTaBJICHHblX 
AJIH 3Toro THIIa OAHOMepHoro I<OHTmzyyM. IlpHMeHHeMblli rrpH 3TOM crroco6 AC~HH aaTo
MaTH'IeCKH YAOBJICTBOp.HeT Bbipa>f<eHHIO AJIH pacrrpeAeJieHIDI Ha'IaJibHbiX HarrpiDi<eHHii wrn 
yrrOMHHYThiX BbiWe OAHOMepHblX TCJI. IlpHBCACHbl ABa 1IpOCTbiX 1IpHMepa, OAHH H3 HHX 
HJIJIIOCTpHpyeT Mepy ,,Kpaeaoro 3$$ei<Ta'', I<aK <PYHKQHH rrpocrpaHCTBeHHoro rrapaMeTpa 
BJIHHHHH a E (0, 1). 

1. Introduction 

A GENERAL constitutive equation for homogeneous isotropic materials with spatial 
cognitivity is [1](5

): 

(1.1) T = 3 (x-z), 
zeBt 

where the spatial description is employed and where a is an isotropic rank-two, gen-
ZEBt 

erally nonsymmetric, tensor valued functional on Br, the image in the physical space C 

(1) Some aspects of the development presented here form part of a 1966 Ph.D. Thesis submitted 
by one of us (Y.S.P.) to the School of Engineering and Applied Science, University of California, Los 
Angeles (UCLA). The present formulation, however, is solely that of the senior author. 

(2) Cf., [1] for the three-dimensional constitutive theory, where the motivation for this work 
and further references to the literature are given. In particular, EDELEN[2], ERINGEN & EDELEN [3], and 
ROOULA [4] have also considered non-local effects. 

e> Professor of Engineering and Applied Science, UCLA. 
(
4

) Senior Engineer-Research, Atomics International -A Division of North American Aviation, Inc. 
(

5
) Unless otherwise stated, we adhere to the terminology and scheme-of-notation adopted in [1] 
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534 A. J. A. MORGAN AND Y. s. PAN 

of the body at timet. Forms of (1.1) possessing greater· explicitness can be obtained upon 
invoking additional hypotheses. This is done in [1] for the three-dimensional case. 

Almost independently of [1], in this article we explore the consequences which, upon 
introducing additional hypotheses, can be deduced from (1.1) when the body is one
dimensional. This means that all images B, of the body f!J occupy connected sub-intervals 
of a one-dimensional Euclidean point space. Thus, the deformations of the body are 
maps which take one point on the real line to another. The stress-vector and -tensor are 
represented by the same real number, its sign specifying the direction of the stress-vector. 

Denote two open connected subsets, 10 and I,, of the real line ~ as follows: 

(1.2) Io = (L2, L1), L2 < L1, and I, = (/2, /1), /2 < 11. 

Then, for our present purpose we adopt the notation (6
): 

B0 = I0 , the image of f!J in its reference configuration; say: Xo, 
B, = I,, the image of f!J in its configuration at time t, z,, 
x I 0 x ~ --+ ~. the motion f!J - here, a one-parameter 

(time: t e ~) family of configurations ( = homeo
morphisms: ~ --+ ~) of f!J relative to B0 : 

(1.3) X= x(X, t) = z,(X) =X +k(X, t), X E I,, X E Io, k(X, 0) = 0, 
and 
Tx,t = the stress at the point occupying the place x iri B,, at time t. 

The intent of the notation employed in (1.1) is that of indicating that in this investiga
tion we refrain from considering media possessing both time-memory and spatial-cognitiv
ity. In fact, we deliberately avoid consideration of the additional complexities introduced 
by the former and by possible memory-cognitivity interactions. However, we do not 
exclude the possibility of posing dynamical problems for one-dimensional bodies com
posed of media with spatial cognitivity. Though this possibility is encompassed by our 
formulation, it is not exploited in this presentation. 

Since it is stated in the spatial description, (1.1) cannot be employed as it stands. 
First it, or suitable approximations thereto, must be cast in terms of referential variables. 
This is one of the objectives of the present investigation. 

In the course of attaining this objective, after defining certain funct~on spaces, a mathe
matical actualizationC) of the spatial one-dimensional form of a Postulate of Fading 
Spatial Cognitivity [1, § 5] is given in Sect. 2. The content of this section permits the 
present exposition to be almost independent of that given in [1]. Approximations to (1.1), 
valid in spatial and referential variables, are derived in Sect. 3. Before applications of 
the first order approximation can be undertaken, it is first cast in a dimensionally homo
geneous form (Sect. 4.1) and some of the implications stemming from CAUCHY's First 
and Second Laws [5, § 15] are pr~sented in Sect. 4.2. The existence of the solution of the 
integral equation for k(X, t) (referential description) is established in Sect. 4.3. In Sect. 5 
there is stated a theorem, establishing sufficient conditions under which a one-dimensional 
body composed of a spatially cognitive medium will obey HOOKE's Law. Finally, two 
examples of applications of the first order approximation for the response functional 

(
6

) For simplicity, we sometimes refer to B0 and Br as one-dimensional bodies. 
C> Others may be po5sible by relaxing the restrictions on the function spaces here employed. 
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are given in Sect. 6. One of these illustrates the appearance of an "edge effect" and the 
significance of the role played by the spatial influence parameter in determining the extent 
of this effect. 

2. Fading spatial cognitivity 

In its one-dimensional qualitative form we state a: 
POSTULATE 2.1. FADING SPATIAL COGNITIVITY. The states of 
deformation of points occupying distant places in the medium relative to 
the place x at which the stress is to be determined have less influence on 
this stress than the deformation states of points occupying places near to x. 

To achieve a mathematical rendering of this postulate, the following function spaces 
are defined (Cf., [I , § 5]) : 

c!: the space of all real-valued functions ~ on at, which, when restricted 
to I, for each fixed teat, possess a norm: 

(2.1) ll~ll!,r = J [~(z)w(z)]2dz 
lr 

induced by the inner product: 

(2.2) (~t, ~2)w,r = J ~ 1 (z)~2 (z)w2 (z)dz, 
lr 

where w is a weight function, and 

c**: the space of all functionals f: c!---+ at which, with absolute value taken 
on the right, possess a finite norm: 

(2.3) 

Upon completion [6, § 4], the spaces c! and c** become real HILBERT and BANACH 
spaces respectively, which, since no ambiguity need arise, we also designate by c! and c**. 

As a means for quantitatively specifying the influence of distant places upon the stress 
Tx,r, introduce a: 

(2.4) 

DEFINITION 2.1. Spatial influence function. A scalar-valued function ~ defined 
on thefield 

v<·>(·) = v( ·, · ): atx&l---+ 91: (x, z)---+ Vx(z) = x-z 

such that for each fixed x e at: 
Lim~(vx(z)) = 0 as lvx(z)l ---+ oo, and 

~(v:c(z)) =I: 0 for any finite lvx(z)l ~ 0. 

In some instances it is convenient to introduce a spatial influence parameter u e (0, 1) 

to characterize the rate of decay of the function~ by redefiningvx to be vx(u' z) = _!_ (x-z), 
' (j 

with (2.4) also holding for each u e (0, 1]. 
Based on the preceding definitions and reasoning as in [1], a mathematical rendering 

of the preceding qualitatively-stated postulate may be expressed as: 

http://rcin.org.pl



536 

(2.5) 

A. J. A. MORGAN AND Y. S. PAN 

POSTULATE 2.2. FADING SPATIAL COGNITIVITY (Mathematical 

rendering). The constitutive equation defining the medium has the form: 

T:x,t = if(x-z) = f(~ o Vx;a), X, z E Ir, Cl E (0, 1], 
zeft 

where the constitutive functional f is an element in c**, and the spatial 

influence function ~ ovx,a is an element of c! satisfying (2.4), where 

Vx;a(z) = Vx(Cf' z). 

This postulate, since it partially identifies ~, serves as a guide for constructing constitutive 
equations for the class of media under consideration. 

3. An approximation to the response functional 

The conditions f : c! -+ 'PA, f e c**, of the preceding postulate are now invoked so 
as to serve their intended purpose of enabling us to apply the theory of FRlkHET differen
tials (Cf., [1] for citations to the literature) and RIEsz's theorem. Thus, the first order 
approximation to (2.5h is the first term in the FRECHET power series expansion off about 
the null element () e c!; hence, it takes the form: 

(3.1) 

where ~f is, for each fixed x e Ir, a linear functional on the space c!, and where [by (2.4)] 
~of((}, ~) = f(O) = 0. 

Supposing h o Vx;a to be differentiable with respect to its argument; by (1.3), the first 
term of its Taylor series expansion is: 

(3.2) (f) o Vx;a)(z) = f) (X ~z + ~ (k(X, 1)-k(Z, 1)]) 

= l)(X~Z) + ~ (k(X, t)-k(Z, t)]l)'( X ~z) +0{ ~ (k(X, t)-k(Z, t)f 
J 1 }2 = (~oVx;a)(Z)+(Yx.r;aovx)(Z)+Or(t[k(X, t)-k(Z, t)] , 

where ~'(W) is the first derivative of~ evaluated at W. Under the assumption that k( ·, t) 

is differentiable to any required order, the Taylor series expansion for the second term 
in (3.2) is: 

(3.3) (Y X.t;a 0 V xHZ) = { ~ 2 (-~~+ 1 

(k'm'(X' I )](X-zr} l)f ~ z). 
m=l 

Thus, by (3.2) and on not exhibiting the error term, (3.1) becomes: 

(3.4) T:x,t = bf(O; ~ oVx;a+Yx,t;aoVx). 

Hence, on requiring that Yx,t;a o vx be an element of ~;..-the referential counterpart of 
c! - for each Cl e (0, 1 ], X e I0 , and each t e (- oo, oo ), 6 f is transformed into a linear 
functional on ~;... By its linearity property, (3.4) can be written as: 

(3.5) T:x,t = bf(O; ~oVx;a)+bf(O; Yx,t;aoVx). 
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By the RIESZ representation theorem [6, § 16] for a continuous linear functional on 
a real HILBERT space, (3.5) can be expressed as: 

(3.6) Tx,< = J g(X-ZH(~~z) W'(X-Z)dZ+ J g(X-Z)Yx,<;a(X-Z)W2(X-Z)dZ, 
~ ~ 

where 

Tx,t = Tx,r(X, f). 

This is the form of the first order approximation to (2.5) which will be employed in the 
sequel. 

The accuracy of the approximations (3.1) & (3.2), and (3.6), increases as, respectively, 

lll>llw (or lll>llw, as appropriate) and 

1 
-lk(X, t)-k(Z, t)l --+ 0 for each X E / 0 , each t E (- oo, oo), each 
a 

a E (0, 1], and all Z E / 0 • 

4. Investigation of the first order approximation 

For convenience we restrict the subsequent development to the case where the spatial 
influence is homogeneous: i.e., W = 1 t, the unit function on / 0 • 

Upon setting k(X, t) = k(Z, t) = L, a rigid-body translation by L, for all X, Z E / 0 

and each t E (- oo, oo ), the second term on the right-hand side of (3.5) vanishes and 
the first term represents an initial (or, pre-) stress(8

) which is not due to the deformation 

from / 0 to lr. The "pure stress", Tp;x, is then given by: 

(4.1) J 1
1 } dl) i 

Tp;x,t = T.-c,r-To = g(X-Z) -[k(X, 1)-k(Z, t)] dS I 1 dZ, 
a s- -~-~ 

~ a 

which, as it should be, is insensitive to a rigid-body translation. 

4.1. Dimensional homogeneity 

As it stands (4. I) is not dimensionally homogeneous. However, recollecting that at 
our disposal we have a characteristic-length A and a -time r, which are not explicitly 
exhibited in (2.7), we may easily render (4.1) dimensionally homogeneous by setting: 

(4.2) X= AX, Z = .t1Z, t = rt, L 1 , 2 = .t1L1 , 2 , k(X, t) = Ak(X, t) = k(X, t), 

(4.3) (x-z) _ -(x- z) {)-- ={)--, 
a a 

( 8) This result (cf., also, [1]) is worthy of emphasis. On the one hand, because it shows that our 
method of derivation automatically yields an expression for the initial stress distribution within a (one
dimensional) body. On the other hand, because it supports the assertion that nearly all bodies possess 
a non-zero initial-stress state. 
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and 

(4.4) 
i-- -

g(X-Z) = Ag(X-Z), 

A. J. A. MORGAN AND Y. s. PAN 

where E is a modulus with dimension "stress". Hence, by (4.2) to (4.4), (4.1) tran:sforms 
into: 

(4.5) ~;x,t = Tp;x,t(X, t) = Tpr(X) = TP_}x,t = J ~ [k(X, t)-k{Z, t)]!!i 
1 

dZ, 
E - dS s=-(X-Z) 

~ a 

where, for simplicity, we have set g(X- Z) = I for all X, Z e io. This is the case whose 
consequences we shall develop further in the sequel. 

4.2. The equation of motion 

Respectively, the one-dimensional forms of CAUCHY's first and second laws, expressed 
in terms. of referential variables - T(x) = T(xr(X)) = ('To Xr) (X) = Tr(X)- are: 

(4.6) dTr dx"t
1 I b •• --·-- +e =ex, 

dX dx x=Xc(X) 

and, for each t e (- oo, oo) and all X0 e / 0 , 

(4.7) 

where, respectively, b and x = o2x/ot 2 are the referential forms of the body-force and 
acceleration fields acting on B,; and T,+(X0) [Tr-(X0)] is the stress acting at Xo = Xr(Xo) 
at time t in the positive [negative] direction of x. 

Let 
- - -I (- --) X-Z d{) = -, X-Z 

G - - - =-- 1 -9 
( 11 } dS ls~-.c.f-il 11 

(4.8) and 
- - - ak: -· -
k'(X, t) =-=(X, t). ax 

Then, by (4.5), 

(4.9) t!J· = J {:z lk(X, 1)-k(Z, f)JG'(X ~~) + .~ k'(X, t)c(X ~2)}a. 
lo 

If in its dimensionless form (4.6) is to hold for all X e / 0 and all t e .Fr = 9t = (- oo, oo ), 
then [provided that the body force b o !!lr is continuous on I0 x .Fr and the motion is once 
(twice) differentiable with respect to X e / 0 (t e.Fr)] the general spatial influence function 

must be a twice differentiable function of S = _!_(X- Z). 
Cl 

For the case where for each t e .Fr and each X e / 0 , (b o !!lr) (X) = 0 and .ir(X) = 0, 
on employing dimensionless variables and the notation of (4.5), (4.6) reduces to: 

(4.IO) E dTpr . diit"
1

1 = 0 
A

2 
dX dX x=i<x.r) . 

From J4.10) we can at once read off: If for all X e I0 , t e.Fr, (df,-t fdx)L~=i(i.f> # 0, 

then iTprfdX = 0 on l 0 • Therefore, if the body is in equilibrium in the absence of a body
force- and an acceleration-field, then the "pure" stress state within it is a constant stress
field. 
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4.3. Existence of solutions 

Cleaving to the static case, rewrite (4.5) as follows: 

(4.11) J(i) ~ k(X)- J :e(cz;X, ~ )kcZ)aZ, 
/o 

where 

(4.12) 

and 

Equation (4.11) is a linear integral equation of the FREDHOLM type. Let !l'2 be the set 
of all square integrable real-valued functions on i0 , equipped with the corresponding 
induced inner product. There exists a solution k{i) e !i2 of (4.11) if and only if its ad
joint homogeneous equation possesses only the trivial solution [6]. This is true for (4.11); 
hence, it has a solution. 

Since the homogeneous counterpart of (4.11) has as its only solution k(X) = constant 
on l 0 , the solution of (4.11) is unique up to a constant; i.e., a rigid-body motion. 

5. Hooke's law 

As has been shown in [1], Hookean materials are a special case of all materials with 
spatial cognitivity. For the one-dimensional static case, based on (4.5), we state: 

THEOREM 5.1. If the general spatial influence function ~ is such that: 

(5.1) 

where ~ is the DIRAC ~-function, then TP = Ee, where e = (dkfiX) and E is a constant. 
In ~ summary, as a guide for the construction of spatial influence functions~' we have: 

(5.2) 

and 

I. Lim ~(__!_(X-z)) = o, e1 =F 0, 

1

1--1 (] ;y(X-Z) -+CO 

2. for all X, Z E / 0 , 

3. ~ must be at least a twice differentiable function with 

- 1 - -
respect to S = - (X- Z). 

(] 
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6. Examples 

Two simple examples are presented in this section. The one-dimensional body under 
consideration is assumed to be in its static equilibrium state under the action of a null 
body-force field- then, as shown above, the stress-field will be a constant field on the 
body. The solution for one of these two examples exhibits the boundary layer effect 
mentioned in [1] and demonstrates the significance of the influence parameter a for the 
medium. In the case of Example I the detailed calculations were performed on an IBM 
7094 digital computer. A graph of the results is given in Fig. 1 . 
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Ei<(Xl t 
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·6.1. Example I 

The spatial influence function {) is chosen to be: 

(6.1) -(1 - -) 1 1 
~ -d-(X -Z) == -"" . I+ [-~(X -Z)r 4. 

This function satisfies all of the criteria (5.2). If the half-length L of the body is taken 
to be the characteristic length of the medium, then (4.12) 1, 3 become: 

{6.2) 
p(i) = ~a [I+ [(X~ 1)/a]2 - I+ [(X~ 1)/<1]2 ]' 

(
- - 1 ) 2 1 X -Z 

!l' Z; X, a = 1u13 . p(X) . {1 +[(X -Z)/a]2} 2 • 

It can be verified from (4.5) that as a ~ 0 in this cas.e, k(X) = J.X, where). is a constant, 
will yield a constant stress. Therefore, for this medium, as a ~ 0, the deformation which 
will produce a constant stress distribution within the body is: 

(6.3) x(X) = (1 + J.)i, 

the simple-extension case. The corresponding stress is given by 

T = EJ., 

where E may be identified with the usual YouNG's modulus. 

t>.2. Example 11 

Choose 

(6.4) 
_ ( 1 __ _ ) 1 I ·[ l _ _ J2l {) --(X-Z) = - -_-exp - - (X-Z) . 

a 2 V na 2a 

This spatial influence. function satisfies conditions (5.2). Taking A = L, the half-length 
of the body, (4.5) reduces to: 

(6.5) 
- 1 

Tp = - - 1!._ Jcx-Z)e-£<x-z>!2aF{k(X)-k(Z)}iz. 
4 V na3 -1 

It is easy to verify that, in the limit a ~ 0, (6.5) will yield a constant stress when k(X) = J.X, 
where A. is a constant. 

7. Concluding remarks 

From the results exhibited in Fig. 1 it is evident that an "edge effect" occurs for small a. 
As a ~ 1 this effect spreads into the body, as would be intuitively expected. Thus, it 
seems that we are justified in asserting that the spatial influence parameter a does serve 
to partially characterize such an effect. 

Naturally, explicit examples of two- and three-dimensional problems remain to be 
constructed and solved. Of particular interest would be boundary-value problems whose 
solution could be subjected to experimental verification. 
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