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An analytic approach to some problems of eptimal design 
of beams and plates 

V. KOMKOV and N. P. COLEMAN 
(LUBBOCK, TEXAS, and ROCK ISLAND, ILLINOIS) 

THE METHOD of optimum design of elastic systems, in particular of beams and plates, is analyzed. 
The abstract methods of differentiation in Hilbert space are applied. Identification of critical 
points of functionals determines the optimum design of elastic system. 

Autor omawia optymaln(l metod~ projektowania system6w spr~zystych, zwlaszcza belek i plyt, 
stosuj~c abstrakcyjne metody r6i:niczkowania w przestrzeni Hilberta. Identyfikacja krytycz
nych punkt6w funkcjonal6w okresla optymalny projekt ukladu sprcczystego. 

06cylli~aeTCH MeTO~ OIITHMaJibHOrO IIpOeKTHpOBa.HHH yrrpyrHX CHCTeM, OC06eHIIO 6a.JIOK H IIJIHT, 
IlpHMeHHeTCH a6CTpai<THbie MeTO~bl ~<P<l>epe~HpOBaHHH B rnm.6epTOBOM IIpOCTpaHCTBe! 
l!~eHTH<l>HKal.UfH KpHTHqeCI<HX ToqeK <l>YJIKI.UfOHaJIOB OIIpe~eJIHeT OIITHMa.JILHbiH rrpoeKT 
yrrpyroii CHCTeMbl. 

Introductory renmarks 

THE PROBLEM of optimum design of beams, simple plates, sandwich plates and structures 
has been a subject of many recent papers. The optimum weight design for a given de
flection at a specified point along a statically determinate beam has been derived by PRAGER 
in [6]. Several papers by PRAGER and his collaborators (see particularly CHERN) have 
generalized this result obtaining necessary conditions for minimal weight subject to some 
a priori specified deflection condition [7, 8, 9, 10]. The derivation of PRAGER and asso
ciates utilized Betti's principle (which could be regarded as an alternate form of Casti-

1 

gliano's theorem) Y(x0 ) = J M(x) m(x+x0 ) S(x)dx. The assumption of statical determi-
o 

nacy resulted in the moments M(x) and m(x-x0 ) being independent of the design para
meter, which was S(x) = [EI(x)]- 1 • However, even in the case of minimum weight design 
for a specified deflection at some given point along a beam, the existence of such 
admissible design or its uniqueness has never been discussed. Moreover, the criteria 
of admissibility have never been explicitly stated in these papers. 

A more general class of optimization theory, incorporating the usual strength or sta
bility criteria has not been , solved to the best of our knowledge. An important problem 
of optimization theory concerns minimization of maximum deflection, or of maximum 
slope subject to constraints concerning weight and/or strength criteria. The problem ()f 
minimizing the maximum deflection arises in some precision mechanisms, and jn the de
sign of weapons. A constraint Jimiting the maximum stress level, or perhaps · the magni-

3* 
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566 V. KOMKOV AND N. P. CoLEMAN 

tude of the Huber-von ~ises stress tensor invariant (or other strength criterion), is na
turally assumed in engineering analysis. In this class of optimization problems the diffi
culty in generalizing Prager's result [6] becomes apparent. Moreover, the problem of mi
nimizing the maximum deflection subject to a constant (given) weight of the beam (or 
plate) is not the dual of Prager's problem of minimizing the weight subject to a given 
deflection at some specified cross-section of the beam (or plate), in the usual definition 
of duality, as given for example by LUENBERGER ( [5], Sec. 7.12, pages 200-209), and in gen
eral entirely different designs would result in these two optimization problems, unless 
some additional assumptions are made, which appeared to us to be very unrealistic. (How
ever, these assumptions turn out to be justified in an actual engineering case concerning 
a certain sandwich beam design). In general, we have to regard these two problems as un
related, and optimality criteria derived for one of them are inapplicable to the other. 

In this paper we shall first consider Prager's problem and derive some theoretical 
results concerning existence and uniqueness of optimal designs. Then we shall consider 
the optimization ·problem of minimizing the maximum deflection or slope subject to some 
weight and strength criteria. 

1. Notation and some mathematical preliminaries 

The notation is fairly standard: M(x) is the bending moment due to the applied loads, 
m(x, x0 ) is the bending moment at x due to a unit load positioned at x0 , 

( ) 
_ dm(x, x0 ) 

q x, Xo - d ' 
Xo 

E is Young's modulus (considered constant in this paper), I(x) is the moment of inertia 
of the cross-section about the neutral axis, A(x) denotes the cross-sectional area. 

We note that only the product El matters in our arguments. In the first half of this 
paper we shall consider exclusively the beam equation 

(1.1) d2 ( d2y) 
dx2 EI(x) dx2 = -g(x), 

x E [0, 1], subject to boundary conditions which will be specified later, but such that the 
problem is well posed. y(x) is an element of the Sobolev space H 2 [0, 1], i.e. it is twice 
weakly differentiable, and both derivatives and y(x) are elements of L 2 [0, 1]. The "elastica" 
condition requires y(x) to· be an element of C1 [0, !], that is to be once continuously 
differentiable. E is a positive constant. I(x) is piecewise continuously differentiable 
function of x, and so is A(x). g(x) is assumed to be ofthe form 

n m 

(1.2) g(x) = a(x)+ ~ c1f5(x-;i) + ~ ~f5'(x-;i), 
i=1 j=l 

where c" i = 1, 2, ... , n, ~' j = 1, 2, ... ,m are constants, f5(x) denotes the Dirac delta 
function, 0 < ;k <I, k = 1, 2, ... , r (r =max(m, n)), and a(x) is an element of L 2 [0, 1]. 
For theoretical reasoning justifying restriction of admissible loads to form (1.2) see [4]. 
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We also assume that there exists a functional relation A(x) = cl> (I(x)) in our discus
sion of beam theory, cf>: ~+ ~ ~+ and monotonically increasing. We introduce a para
meter (or vector) S(x), which uniquely defines our design. We postulate that S(x) is a pos
itive function (vector with positive components) bounded and piecewise continuous 
on [0, /]. For mathematical convenience, S will be regarded as an element of L 2 [0, I] 
(or LHO, /]). We assume that A(x), l(x), and consequently the deflection y(x), are 
uniquely determined by our choice of S(x). This triple [S(x), A(x), /(x)] will be referred to 
as the design. S(x) will be required to satisfy some a priori given inequalities 0 < S 1 ~ 

~ S(x) ~ S2 , where S1 , S2 are positive numbers. 
N o t e. Of course pointwise inequalities do not make any sense in the L 2 [0, I] setting 

and we can revise them as essential inequalities, i.e. essentially S1 ~ S ~ S2 • However, 
piecewise continuity of S(x)· implies that essential inequalities can be replaced by pointwise 
inequalities and our objections could have been overlooked in the first place. (Essential 
~ means almost everywhere in the L 2 case). 

2. The minimum deflection problem of Prager 

We formulate the following problem: 
(A) Let S(x) be the design parameter, which will be identified with [EI(x)]- 1 • For 

a given x0 E [0, I], minimize the deflection ly(x0)1 subject to the constant weight constraint 

l 

J A(x)dx ~ 1, 
0 

i.e. 
I I 

(2.1) f 'P([EI(x)r 1)dx ~ f 1f'(S(x))dx ~ 1. 
0 0 

LEMMA 1. If the product (M(x) · m(x-x0 )) changes sign on [0, 1], then there exists 
a solution to problem (A) but it is not unique. 

Proof. Since M(x) and m(x-x0 ) are piecewise continuous functions, the product 
is also piecewise continuous, and by hypothesis it changes its sign on [0, /]. Hence, on 
some family u 1 of open subintervals of [0, 1], ( M(x) m(x-x0)) < 0 and their complement 
contains a family open intervals u2 such that M(x) (x-x0 ) > 0, and M(x)m(x-x0 ) = 0 
or is undefined if x E[O, /]/(u1 u u2). We assume that the set of points on which Mm 
is undefined is of measure zero. 

m n 

U1 = U (xiX,, xiX1+J, u2 = U (xp1, Xp;+l), 
i=l i=l 

(xiX,, xiX1+1), (x11,, XJJi+t) are open, disjoint subintervals of (0, /). We denote by 1-'1 the 
measure of u1 and by p,2 , the measure of u2 • cf>(xk, x 1) is the characteristic function 
for an interval (xk, x1), i.e. 

{
- 1 

cf>(x) = 0 
if X E (Xk, Xr), 

if x E (xk, x 1). 
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We select the cross .. sectional area to be 
, 

A(x) = cp-1 {K 2: c,cp(xi, xi+ 1)x"}, 
i=l 

where xi, i = 1, 2, ... , v, v ~ n+m, are the end points of the intervals of a1 and of a2 ; 

c1,,K are positive constants and n =I= 0 is an integer. 
Consequently, the moment of inertia l(x) has to be of the form: 

and 

Denoting 

we see that 

11 

l(x) = K 2 cicp(x;,Xi+ 1)x" 
i=1 

, 
{/(x)} - 1 = K- 1 2 et 1(X;,Xi+ l)x-". 

i=l 

Xl+1 

E- 1 J M(x) m(x-x0 )x-"dx = Yi(Xo), 
XI 

11 

y(Xo) = K- 1 2 Yi(x0 )c;- 1
; 

i=l 

Yt(x0 ) are negative if(x, xi+ I) c a2 and positive if (xi, xi+i) c 0'1. Hence we can choose 
the constants c; so thaty(x0) = 0, independently of the value of K- 1

• Now it is clear that K 
I 

can be selected so that J A(x)dx = 1. Since n was an arbitrary integer, the proof is com
o 

plete. 
To prove Theorem 1, we also need the following lemma: 
LEMMA 2. If M(x) m(x-x0 ) > 0 for all xe(O, /), then there exists an optimal L 2 [0, f) 

design (which need not be admissible!). 
0 u t I i n e o f t h e P r o o f. The proof follows a fairly routine functional analytic 

argument. Let us introduce an energy product for 
I 

u, v E H 2 (0, I), (u, v) xo = J M(x) m(x-x0 ) u(x) v(x)dx 
0 

.((M(x)m(x-x0 )was assumed to be positive!), Hwill denote the completion of the energy 
space with the product ( , ). Let us identify without any loss of generality the design 
parameter S with [EJ(x)]- 1' 2 • Then we have y(x0 ) = (S, S) = IIISIII 2

, where 111·111 
is the energy norm. (See MIKHLIN [12], Chapter 6 for definitions and a discussion of these 
concepts). S must be uniformly bounded away from zero, and consequently y(x0 ) is also 
uniformly bounded away from zero. Hence there exists, a sequence of admissible ele
ments S1 considered as elements of spac,e H such tha~ lim IIIS;III2 = y(xo), where 

i-+00 

the greatest lower bound of y(x0 ), will be denoted by y(x0 ). By completeness of 

the Hilbert space H, we can conclude ·that there exists an element S e H such that 
IIISIII 2 = y(x0 ). (Observe that positiveness of Si e L 2 means that weak convergence 
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(in L 2 ) implies convergence in the norm (see DuNFORD and SCHWARTZ [2], Part I, theorem 
on page 388, Sec. IV). After a standard argument we conclude the existence of Se L 2 

[0, /]. Of courseS may fail to be an admissible design parameter. (However, it will satisfy 
the basic inequality constraints of an admissible design). Additional assumptions are need
ed to prove an existence of an addmissible optimal design. 

If we redefine admissibility using more realistic engineering criteria, then the existence 
of an optimal design is not hard to prove. 

We say that the design S(or rather the triple (S, A,!)) is addmissible if, in addition 
to the previously stated requirements, it is also true that for all x e [0, /]M (x) m(x-x0 ) 

[/(S)t 1 ~ a0 jc for some a priori given constants a0 , c, while the cross-section is restricted 
to geometric design which depends on parameter S so that the depth of the beam h is de
termined uniquely by S and that h ~ c. 

THEOREM 1. We identify S »,.ith [E/]- 1
. There exists an optimal admissible design, pro

vided there exists at least one admissible design. 
We comment that it is possible for only a finite number of admissible designs to exist. 

In fact it is easy to construct a case when only one admissible design exists. However, in the 
case of only finitely many admissible designs, the conclusion of the theorem is trivial. 
Hence we only need to consider the case when infinitely many admissible designs exist. 

Proof. We duplicate our arguments concerning the existence of an optimal L2 [0, 1] 
design. In this case we need to show that an L 2 design also has to be piecewise continuous. 
Assume to the contrary that a limit S of admissible designs Si exists, y(S) is minimal, 
i.e. ly(S)Ixo ~ ly(S)Ixo for any admissible design (S), and SE L 2 [0, 1], but fails to be piece
wise continuous. Hence, given e > 0, there exists a point x e [0, /] such that given any 
natural number n > 0, there exists N > n such that Si has more than N discontinuities 
in the e-neighborhood of .X for some sufficiently large values of the subscript i. Since M 
and m are fixed (and independent of the parameterS), the product Mm has some (fixed) 
number k of discontinuities in the e-neighborhood of .X, and the product MmSi has at 
least N- k discontinuities. Hence yi(Si(x), x) will be discontinuous if N > k, which con
tradicts the admissibility of Si completing the proof. 

We comment that there is no reason for assuming the uniqueness of such optimal 
design. However, assuming that two such (admissible) optimal designs exist- say 
S1 (x), S 2 (x), S1 # S 2 on some subset of [0, /] on which M(x) m(x-x0 ) # 0, we com
pute: 

I 

y(x = x0 ) = J SM(x) m(x-x0 )dJV, 
0 

where S = min(S1 , S2), and find that IJi(x = x0 )1 < y(S1) 1x=xol' = y(Sz)1x=xol• which 
is a contradiction since y(S1 ) is optimal. Hence only one such optimal design exists. 

3. An optimization problem in the beam theory 

Problem A. Given the total weight W of a statically determinate beam, and given an 
admissible load g(x), find admissible optimal design determined by a parameter S such 
that the maximum deflection of the beam is minimized; (S1 ~ S ~ S2 ). 
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Problem B. Regarding in the problem A the weight Was a parameter, find its smallest 
value W such that the maximum stress does not exceed a given value a0 • 

C o m m e n t. The problem of minimizing the maximum deflection subject to constant 
weight is not (as we have already remarked) the dual of the weight minimization problem 
subject to either a given deflection at a given point (PRAGER [6]) or to minimization of 
the weight subject to a given maximum deflection of the beam. 

We postulate the existence of influence function G(x-x0 ) such that 

(3.1) y(x0 ) = G(x)!g(x), 

where g(x) is the applied load, and * is the convolution operation. G(x) depends on the 
properties of the beam and boundary conditions but is independent of the load g(x). 

We shall at first discuss the beam optimization problem in detail because of its simplic
ity, and only later generalize the result to plates, structures, etc., since almost identical 
approach will give analogous theoretical results. 

We shall assume that the beam is statically determinate and satisfies at the end points 
one of the following conditions: 

a) It is freely supported 
(displacement y and bending moment are both equal to zero at the end point), 

b) It is built in 
(y = dyfdx = 0 at the end point), 

c) It is free. 
(The bending moment and the shear load both vanish). We now consider the depend

ence of the influence function G(x) on some design parameter S(x), i.e. 

(3.2) G = G(S(x), x ). 

Duhamel's principle (3.1) becomes 

(3.3) y(S(x), x 0 ) = G(S(x), x)•g 

d2 
= G(S(x), x)• dx2 M(x), 

where M(x) is independent of the design parameter S because of our assumption of statical 
determinacy. 

Suppose that G{S(x), x) is Frechet differentiable function of the parameter S(x). 
Then the condition of optimality of the design with respect to the deflection y { S(x), Xo) is 

d2 
(3.4) dx2 Gs(S(x(x)•M(x) = 0, 

where Gs is the Frechet derivative of G with respect to S(x). (See [7], or author's exposi
tion in [3] for rules of Frechet differentiation and for definitions. Also see [11]). 

If we take into account the side condition of constant weight (or similar constraint) 
(]>(S) = C and local maximality of y(x0 ) as a function of the (deflection point) variable Xo, 
we obtain, by using basic properties of convolution products: 

(3.5) 
d2 dy(xo) 

Yo d 2 Gs(S(x, Xo))•M(x)+y1 (]>s(S)+y2 -d- = 0. 
X ~ 

http://rcin.org.pl



AN ANALYTIC APPROACH TO SOME PROBLEMS OF OPTIMAL DESIGN 57l 

Computing the value of the last term we can rewrite this optimality condition as: 

(3.6) {Yo :::2 G(S(x), Xo)•M(x)+y, <l>(S)+y2 (dG(~!· Xo • ::2 M(x))L = 0, 

where y0 , y 1 , y 2 are Lagrangian multipliers. 
We can put the formula (3.11) into a more familiar form by observing that: 

(3.7) 
d2 ( ) m(X-Xo) 

. dx2 G S(x)' Xo = El(x) ' 

where m(x- x 0 ) is the moment produced at x 0 by a unit load situated at x. 
Since, in a statically determinate case, m(x, x 0 ) is independent of the design, we have· 

t3.8) 
d2 
dx2 G(x, S(x))*M(x) = m(x)*(EM(x))Is 1 (S(x), x). 

Using rules of Frechet differentiation we have 

(/- 1) 8 = -I-2(S(x), x)· ls(S(x), x), 

and we have the necessary condition for optimality of design: 

(3.9) .10E(m(x)*(M(x))· ( -I- 2(s(x), x)Is(S(x), x))) 

1 n.. 1 ( ) (dG(S(x), x )) _ 0 + /1.1 'VS+ IL2q X * d - •· 
X s 

This implies that (/>5 must lie in the two-dimensional subspace spanned by the other two 
terms, which can be regarded as orthogonality conditions. 

C o m m e n t. The statical determinacy was used in Frechet differentiation to ignore 
the terms M(x) and m(x). However, the basic condition is theoretically unaltered if statical 
determinacy is not assumed. The general condition of optimality of design subject to· 

(/>(S(x)) =constant and dyd(Xo) = 0 becomes in that case: 
Xo 

(3.10) AoE(m(s(x), x ))* (M(S(x), x )I- 1 (S(x), x ))s 

(
dG(S(x), x )) 

+ A1 (/>s + A2q(x)* dx ~ = 0. 

Usually we restrict the class of cross-sectional areas (and possible shapes of the beam} 
to some specific geometries. We shall say that A(x) is an admissible cross-sectional area 
if it satisfies all our restrictions. 

The cross-sectional area is assumed to depend uniquely on the parameters. The mo
ment of inertia of the beam is assumed to be uniquely determined if the cross-sectional 
area is given: 

(3.11) A = A(S(x) ), J(x)) = lj>- 1 (A(x)) = I(S(x) ), 

that is we assume that a choice of the parameter or vector S uniquely determines the area 
and the moment of inertia (about the neutral axis) of the cross-section. 
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_-\n example of application 

Design a statically determinate rectangular beam of constant width b and length /, 
:subjected to a loading g(x), to minimize the maximum deflection: max ly(x)l. The total 

xe£0,1] 

weight of the beam Q is given a priori. 

Instead of the total weight condition, we can substitute the alte~nate condition 

1 

J A(x)dx = constant 
0 

I 

or J h(x)dx = constant. 
0 

Here the width b is constant, the height h(x) is the design parameter (that is h(x) will be 
our S(x) of the previous discussion). 

We shall follow the above theoretical arguments to derive a necessary condition of 
optimality for the parameter h(x) for this particular design problem. 

As before, we make use of the deflection formula 

I 

y(x0 ) = E- 1 J M(x)m(x-x0 )I- 1 (h(x) )dx. 
0 

bh3 (x) 
:Since /(h) = -u-, we have 

I 

( ) = 12£-lb J M(x)m(X-Xo) d 
YXo h3(x) x. 

0 

A necessary condition for x 0 to be an extremal point of y(x0 ) is 

I 

dy(x0 )_ = J M(x)q(x-Xo) d = 0 
dx0 h3 (x) x ' 

0 

if {

Xo "# 0, 

X 0 "# l, 

where q(x- x0 ) = dd m(x- x0 ), that is q is the moment at x produced by a unit 
Xo 

.couple at x0 • The constraint of constant weight is 

I 

J h(x)dx = constant. 
0 

According to the formula (3.11) we have the necessary condition for optimality of h(x) 

(A) 

where A. 1 , A.2 are (constant) Lagrangian multipliers. 

The formula above states that a necessary condition for the optimality of the design 
is as follows. The convolution product on the left-hand-side of equation (A) is independ
ent of x. As before, M(x) was the moment produced by the actual loads, while m(x, Xo) 

was the moment at x produced by a unit load positioned at x0 • 
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4. Optimization of thin plate design 

We proceed along similar lines, except that no condition similar to static determinancy 
·can be established for the plate under any sensible support condition on the boundary. 

The deflection function w(x, y) obeys the differential equation: 

(4.1) V2 (D(x,y)V2w)+(l-v)~4(D, w) = g(x,y) in Q c R2 

{see [1] for a more general form in case of an anisotropic plate). 
On the boundary aQ the plate obeys one of the two conditions 

(Bl) 

(B2) 

aw 
w = 0 and -a = 0 on aQ' n 

where n is the direction of outward normal to the boundary and r is the tangential direction. 
If a I as denotes the symbol of differentiation with respect to the coordinate locally 

following the boundary, we have the relation 

az az a 
ar2 = as2 + k an ' 

where k is the curvature of the boundary. 
Again, for the static plate equation we assert the existence of the influence function 

·G(x, y, ~, n) such that 

(4.2) w(x,y) = J G(x-~,y-n)g(~,'YJ)d~d'YJ = G•g. 
J} 

We observe that indeed G(x-~, y-n) is the deflection at (x, y) produced by a unit load 
(i.e. Dirac delta function) positioned at (C, 'YJ), since putting g = ~(~, 'YJ), we have 

w(x, y) = G(x, y) * ~(x, y) = G(x, y) 

(which is hardly a novel development). We are now ready to state the deflection optimization 
problem for the thin plate theory. 

Given a plate of weight Q, occupying a precompact region Q c R2 whose boundary 
aQ is a Liapunov curve, subjected to a given loading g(x, y), determine the thickness 
h(x, y) so that the maximum deflection of the plate is minimized. The constant weight 
constraint is 

(4.3) J h(x, y)dxdy =constant. 
Q 

Again we minimize w(x, y) = G•g subject to constraint (4.3) and to condition 
grad (w(x, y)) = 0. 

Assuming that G, hand w depend on a design vectorS, we have as the necessary con
dition of optimality of design for a minimum of the maximal deflection at an interior point 

(4.4) 

where 1 is the function identically equal to 1. 
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We comment that grad (w) = 0 is not a necessary condition for maximality of the plate 
if it is free at some position of the boundary, since then the maximum of lw(x, y)l may 
occur on the boundary at a point at which grad (w) =/: 0. 

Maximum stress level constraint 

We observe that the optimization of maximum deflection subject to a constant weight 
constraint produces necessary criteria (3.6) or (4.4) for beams and plates, respectively, 
independently of the particular value of Q representing the total weight of the beam or plate. 
The additional constraint of not exceeding certain maximum stress level, is r max = 

= max M~l.;(x) ~ Go in the beam theory, where Go is given and c(x) denotes max-
xt(O,IJ X 

imum distance (at a given cross-section) from the neutral axis. I(x)jc(x) is a known 
function of the design parameter S(x), and this constraint can be handled in the usual 
manner by introducing an additional Lagrangian multiplier. However, another look at 
the problem offers the following approach. We observe that rmax is uniqueJy determined 
by our choice of the parameter S(x) provided S(x) determined uniquely the choice of cross
section. The formulas (A) and ( 4.4) determine the design only within an arbitrary multi
piicative constant, and the constraint (])(S) = constant = Q must be used to determine 
the design. The constant Q can now be decided upon to satisfy the additional constraint 
Tmax ~ To. 

In this paper we have deliberately avoided computational problems and restricted 
ourselves to the problem of establishing a theoretical background on which such future 
computations can be based. An alternate approach utilizing variational techniques of the 
type given in [3] should be attempted, and is quite likely to give a different set of necessary 
criteria for optimization. 

We finally observe that the method generalizes easily to more complex cases (inertia 
terms included in dynamic cases, shells of revolution, etc.) but it fails in the case of multi
member structures where some basis changes are needed in the approach. 
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