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Drop formation in a transient regime of dispersion 

Notation 

W. KALITA (Warszawa) 

THE OBSERVATIONS of liquid efflux through the circular orifices showed that there are two dif
ferent regimes of drop f01mation for the relatively low flow rates: the first one when the drop 
is formed close to the orifice, and the second one when there exists a jet and the drop forms on 
its end. The aim of the present work has been the study of the transient regime between the two 
mentioned above. In the experiments performed, two immiscible liquids were used with almost 
the same density but very different viscosities- the liquid flowing out of the orifice had a much 
greater viscosity. The choice of these conditions was determined by the fact that the transient 
regime is in this case very wide, i.e. it occurs at different flow rates. The results of the experi
ments and simple mathematical models allowing for a physical interpretation are presented 
in this paper. 

Obserwacje cieczy wyplywaj'lcych z kolowych otwor6w wykazaly, i:e istniej'l dwa r6i:ne obszary 
tworzenia si~ kropli przy stosunkowo niskich pr~dkosciach przeplywu: pierwszy, gdy kropla 
tworzy si~ tui: przy otworze, a drugi, gdy istnieje struga i kropla tworzy si~ na jej koncu. 
Celem niniejszej pracy bylo zbadanie obszaru przejsciowego, wyst~puj'lcego mi~dzy dwoma 
wyi:ej wspomnianymi obsz.arami. W piZeprowadzonych doswiadczeniach ui:ylismy dw6ch nie
mieszaj'lcych sie plyn6w o prawie takiej samej g~stosci, lecz roznych lepkosciach (ciecz wyplywa
j'lca z otworu posiadala dui:o wi~ksZ<!lepkosc). Wyb6r tych warunk6w wynikal z faktu, i:e obszar 
przejsciowy jest w tym przypadku bardzo szeroki, tzn. zachodzi dla r6i:nych pr~dkosci przeplywu. 
W p1acy tej przedstawione zostaly wyniki doswiadczalne i proste modele matematyczne, umoi:li
wiaj'lce fizyczn'l interpretacj~ zjawiska. 

Ha6mo~eHHH >KH~Kocreif BbiTeKaiOI.QHX qepe3 KpyroBoe OTBepCTHe noKa3aJIH, tiTO CYI.QeCTBYIOT 
~Be pa3Hble 06JiaCTH o6pa30BaHHH KanJIH npH cpaBHHTeJILHO HH3KHX CKOpOCTHX TetieHHH: 
nepBaH, KOr~a KanJUI o6pa3yeTCH 6JIH3KO OTBepCTHH, H BTOpaH, KOr~a BbiTeKaeT CTpYH H Kan
JIH o6pa3yeTCH Ha eif KOHQe. UeJILro HacTo.ameii pa6oTbi HBJIHJIOCb HcCJie~oBaHHe nepexo~oif 
o6nacrH, BbiCTynaiOI.QeH Me>K~Y ~BYMH BbiiiieynOM.fiHYTbiMH o6naCTHMH. B npoBe~eHHbiX 
3KcnepHMeHTax HCnOJib30BaHbl ~Be HeCMei.QHBaiOI.QHeCH >KH~OCTH C nOtiTH TaKOH caMOH nJIOT
HOCTbiO, HO C pa3HbiMH BH3KOCTHMH (>KH~KOCTb HCTeKaeMaH H3 OTBepCTHH HMeeT MHOrO 
60JibiiiYIO BH3KOCTb). flo~6op 3THX YCJIOBHH CJie~eT H3 cf>aKTa, tiTO nepexo~aH 06JiaCTb B 3TOM 
cnyqae OtieHb IIIHpOKa, T. 3H. OHa Cyi.QeCTByeT ~JIH pa3HbiX CKOpOCTeH TetieHHH. B 3TOH pa6oTe 
npe~CTaBJieHbl 3KCnepHMeHTaJILHbie pe3yJibTaTbl H npOCTbie MaTeMaTHtieCKHe MO~eJIH ~aiOI.QHe 
B03MO>KHOCTb cf>H3HtieCKOH HHTepnpeTal.(HH HBJieHHH. 

Bo = L1egD2 fa Bond number, 
D internal diameter of the orifice, 
d jet diameter, 
F force, 
g = 981 cm/s2 gravitational acceleration, 
h drop height at time of formation, 
h = hID dimensionless height of a drop, 
K interface curvature, 
m drop mass, 
m = m!edrrD3 dimensionless mass of a drop, 
R radius of a drop treated as a sphere, 
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Lower indexes 

1. Introduction 

R = RID dimensionless radius of a drop, 
Re = (!d UDIP.d Reynolds number, 

t time, 
t = tU ID dimensionless time, 

U mean velocity of the efflux through the orifice, 
u velocity in a jet (mean value in the cross-section), 

W . .KALITA 

V total volume of drop and jet (if the latter exists) at the time of formation, 
V = VID 3 dimensionless volume of drop and jet, 
v velocity of drop mass center, 

V 
V = - dimensionless velocity of drop mass center, u 

We = edU2D/a Weber number, 
x coordinate of mass center of (spherical) drop, 
x = x/D dimensionless coordinate of drop mass center, 

L1e = (!d-(!c difference between densities of liquid phases, 
0 angle between the tangent to drop surface and the direction parallel to drop 

axis of symmetry either in the cross-section connecting the drop and a jet or 
in the plane of the orifice (cf. Fig. 4b), 

p. liquid viscosity, 
p. = /tdl flc ratio of viscosities, 
e liquid density, 
e = l.1e/!!d dimensionless parameter, 
a interfacial tension. 

c, d refer to the continuous and dispersed phase, respectively, 
0 refer to the beginning of the 1st stage of the period of drop formation in the 

presented theory, 
1, 2, 3 refer to the end of the 1, 2, 3rd stages of drop formation, respectively. 

THE FORMATION of drops in. conditions when one liquid flows into another immiscible 
liquid through a circular orifice depends on many factors and among others on: 

the way of flow extortion, 
the material properties of the liquids and properties of the nozzle material, 
the mean flow rate of a dispersed phase, 
temperature conditions. 
Most of the recorded experimental work on dispersion from circular orifices has been 

done in conditioni of continuous injection of a dispersed phase and under constant temper
ature of the system [1-8]. IZARD et a/ [9] showed that the discontinuous injection could 
give (in certain conditions) a dispersion of very uniform drops. Correlati(ln for the drop 
sizes resulting from a dispersion was developed when the continuous phase was static 
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DROP FORMATION IN A TRANSIENT REGIME OF DISPERSION 651 

[I, 2, 4, 5, 7, 8] and when it flowed in a counter current [3, 6]. Many findings on drop 
formation in liquid systems were applied in processes of extraction because of the signif
icant influence of these phenomena upon the characteristics of equipment in the chemical 
industry [3, 10-15]. 

Drop formation and the breakup of a jet in liquid-liquid systems has also been treated 
theoretically [e.g. 5, 8, 16-19] but it seems that these efforts are still in the initial stage. 

The purpose of some of our experiments [20, 21] was to examine the nature of drop 
formation within the range of the relatively low flow rates of a dispersed phase. The injec
tion of this phase was continuous and the outer liquid (i.e. continuous phase) was stat
ic. The three liquid systems studied were chosen in such a way that two liquids of every 
pair had almost the same density but very different viscosities (detailed experimental data 
are given in [21]). Such a choice of liquid systems gives an increase of the geometrical 
scale of observed effects e.g. dimensions of drops and jets. Another advantage is that the 
experimental procedure is greatly simplified. These experiments confirmed some qualita
tive observations described in the literature [2, 5, 6, 22, 23] concerned with the changes 
in the mechanism of drop formation occuring under variation of the dispersed phase 
flow rate. 

It is well-known from observations performed at low flow rates that there are two main 
different regimes of drop formation: the first one occurs when the drop is formed close 
to the orifice, and the second one is when there exists a jet and the drop forms at its end. 
The places of these regimes can be pointed at in a convenient way on the diagram (taken 
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Hean Flow rate 

Fio. 1. Jet length as a function of a liquid flow rate. 

from [23]) where the jet length is the only function of a mean flow rate through the orifice 
(Fig. 1). In the previous work [21] particular attention was paid to the transient regime 
between the two mentioned above. It was noted that this regime is especially wide (i.e. it 
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occurred for different flow rates) in the systems where the liquid flowing out of the orifice 
had a much greater viscosity than the outer liquid (continuous phase). 

An experimental and theoretical study of the transient regime of drop formation in 
such a system is the aim of this paper. 

2. Experiments 

The experiments were performed for the system of two immiscible liquids of very. close 
densities: a solution of castor oil and dibutyl phthalathe was chosen for the dispersed 
phase and tap water for the continuous one. The- physical properties and the test condi
tions are listed in Table 1 (where lower index d denoted the dispersed phase and c the 
continuous one). 

Table 1 

Density Viscosity Interfacial Mean 
Density velocity difference 

/1-d I 
tension through 

(!d,c (!d-!!c f..lc 
(] 

orifice U 

g/cm3 gfcm3 Poises dynes/cm cm/s 

1.0 110- 3 
_ 5. 10- 3 

1 1.0 1 0.01 1 15-20 1-15 

The internal orifice diameter D was equal to 0.1977 cm. This diameter represented 
a characteristic length. The group of factors controlling the phenomenon of drop formation 
includes: densities of liquids (!d and en their viscosities fld and flc, interfacial tension (J, 

diameter of the orifice D and mean velocity of efflux U. Taking into consideration the 
difference between densities LJe instead of density ec and gravitational acceleration g we can 
obtain by means of the dimensional analysis the system of five non-dimensional numbers 
determining the similarity in these experimental conditions: 

Bo = LJegD2 We= eaU2D Re= edUD' 
(J (J ' #d 

(2.1) 
- #d - LJe 
fl = -, e = --. 

flc (!d 

These numbers show the range of experiments in Table 2. 

Table 2 

Bo We Re 

0.0025-0.01 0.015-3.0 0.2·-3.0 100 10-3 -5. I0- 3 

The measurements and observations of phenomena were mainly recorded photograph
ically and the mean values of resulting variabfes (like drop sizes, mean flow rates, etc.) 
were determined by the weight method. 
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3. Experimental results and theoretical models 

The typical pattern of drop formation in the transient regime of a dispersion can be 
outlined as follows: the jet that remains after the detachment of the former drop contJiacts 
to the orifice (Fig. 2a) and there it forms a spherical inception of the next drop (Fig. 2b). 

FIG. 2. Drop formation in the transient regime of dispersion. 

The drop remains at the edge of the orifice and it grows in volume filled from the orifice 
(Fig. 2c) up to the moment when it begins to move at the end of a jet (Fig. 2d). This motion 
is continued (Fig. 2e) to the point of drop detachment (Fig. 2f). 

One can observe the characteristic changes of the distance measured from the top 
of a drop to the plane of the orifice in the time of this period. This distance (denoted by h) 

was chosen as the one of the main variables which describes the phenomenon. An exemplary 
relation for this distance as a function of time taken from experimental movie-pictures 
is drawn in Fig. 3. On this diagram it is easy to point three characteristic stages of drop 
formation. In the first stage, the jet contracts to the orifice, in the second one, the drop 

h 

,. .......... trajectory or a top } 
oF a detached 

drop 
trujectory or a back ,. .. 

/ ...... 
I 

0 

OL---L--------------L----------~------
fo t1 

1st 
stage 

2nd 
stage 

3rd 
stage 

t 

FIG. 3. Height of a drop as a function of time. (Letters in circles correspond to photos in Fig. 2). 
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654 W. KALITA 

remains on the orifice, and in the third one, it travels at the top of a jet up to the moment 
of detachment. If the velocity of the efflux U is increased and if it is greater than a certain 
value Ui called the jet~ing point [6], then the description of. drop formation should be 
modified [2, 21]. In this situation the drop that forms in the way of jet contraction in the 
1st stage does not reach the orifice. In the 2nd stage, the short jet exists between the nozzle 
and a growing drop. Further increases of the velocity U shorten this stage up till it disap
pears completely. The range of velocities mentioned above belongs to the jet regime of 
a dispersion. 

Some simple mathematical models were set up to allow for a physical interpretation 
of the phenomena observed in a transient regime. In the 1st stage and the 3rd one of drop 
formation the motion of the drop at the end of a jet seems to be a main factor of the phe
nomenon. Consequently, the mathematical models for these stages are based on the law 
of drop momentum conservation. The drop will be treated as an individual spherical body 
(resulting from small Bond number conditions) which can interchange the mass and the 
momentum with a jet. The outer f?.ctors (as a jet and the outer liquid) act upon the drop 
by a system of forces. We take into account those forces which are due to interfacial 

d 

b 

Typ/cdl shape 
of drop surface 
observed 
experimentally 

FIG. 4. Configuration for the theoretical description of drop formation: a) in the 1st stage and the 3rd 
stage, b) in the 2nd stage of formation. 
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DROP FORMATION IN A TRANSIENT REGIME OF DISPERSION 655 

tension, gravitation and stresses at the liquid-liquid interface. The definitions of these 
forces result from additional assumptions. 

We assume that the system of forces acts upon the drop in such a way that the mass 
center of a drop moves along a straight line that coincides with the axis of symmetry 
of the orifice. It is chosen as one of the axes of the motionless coordinate system fixed with the 
orifice - that one which conforms to the direc,~ion of gravitational acceleration g (Fig. 4). 

The mass of a drop m and the velocity of its mass center v will be determined as the 
functions of time t from the system of equations consisting of a one-dimensional equation 
of motion of a drop mass-center (based on the law of momentum conservation for the 
material point of variable mass [24] p. 134) and the relation for the rate of increase of 
drop mass. 

If the mean velocity in a jet (in the cross-section that connects the jet and the drop) 
is u and the diameter of the jet is d, then the system mentioned has a general form: 

d ~-, dm 
(ii (mv) = .L.J Fk+d(u, 

(3.1) k 

dm nd2 

dt = (!d -4- (u-v). 

The determination of the forces Fk acting upon the drop is based on the assumption that 
the system of stresses on the drop surface looks like in the Stokes' motion of an individual 
liquid sphere moving with constant velocity through another liquid [25]. Additional forces 
are due to gravitation and interfacial tension. The system of forces has the following form: 

(3.2) 

Fi = -J'td(Jcos(), due to interfacial tension, 
F9 = mg, raising from gravity, 

'6 2)1/3 2 3 
F. _ ~ n !le+ /ld 1f3 v - - -- /le vm , as 

!Jd /le+ #d 
Rybczytiski's law [25], 

m nd2 

FP= -ec-g+ -4 (JK. 
(!d 

a viscid force according to Hadamard-

In the definition of the last force FP, the first term results from the pressure distribution 
on the drop surface, and the second one follows from the additional pressure which exists 
in the cross-section connecting the jet and a drop [26]. This pressure is due to interfacial 
tension and equals to (JK, where K is the curvature of the interface in the section consid
ered. Due to the fact that it depends on the local shape (changeable) of a drop-jet connex
ion, the determination of this pressure is rather difficult to do. When the drop radius is 
close to the jet diameter, then it seems reasonable that this curvature is close to the curva
ture of the jet (K = 2/D if the jet is cylindrical). We assume that in other cases the value 
of the curvature is the same as the one above. 

The parameters describing the jet, namely its diameter d and the mean velocity u, are 
in general cases also unknown functions of time. Since the liquid flow rate q in a jet can 
be assumed to be constant, then: 

(3.3) 
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and the system (3.1)+ (3.3) ought to be completed by one more equation. Instead of that 
we assume the following, what simplifies the problem: 

(3.4) u = U = const, d = D = const. 

As it was mentioned above, the height of a drop h can be chosen as a convenient quan
tity in examining the results of the experiments. Now we define it by: 

(3.5) h = x+R, 

where xis a coordinate of a drop mass center and can be obtained from a familiar equation: 

dx 
dt- = v, (3.6) 

and R is the drop radius defined due to drop sphericity by: 

(3.7) R = ( 3m(t) )1/3. 
4ned 

The equation (3.6) and the system (3.1) will be solved together. Substituting (3.2) and (3.4) 
into (3.1) and then introducing the following dimensionless quantities 

m _ V _ X - tU 
m = ednD3 ' V = u' X = D ' t = D' 

- R ( 3 - ) 
113 

- h 
R = D = 4m ' h = D 

(3.8) 

we can obtain the non-dimensional form of the system (3.1)+ (3.6): 

_t!_(m·V) = Bo m-~-6113 (2+3;tl)vin 1
'
3 +an;_, 

di We We ft(l+ft)Re dt 
(3.9) 

:~ = ! (1-v), ~- = v, 
where Bo, We, Re, P, are criteria! numbers of similarity defined by (2.1) in the description 
of experiments and b is a coefficient defined by 

(3.10) 
1 

b = cosO- 2 . 

For every stage of drop formation we, in turn, determine the conditions for the beginning 
and the end of the stage. It is assumed that the drop mass m and the coordinate x of its 
center are continuous functions of time t but the velocity v may not be continuous from 
stage to stage. 

Considering the 1st stage we assume additionally that viscid force Fv can be neglected 
and that 

(3.11) cosO = 1 

because of the assumed cylindrical shape of a jet. 
The condition for the beginning of this stage is specified as 

(3.12) - .. I 2 
t = t 0 : m = 0' V = 1 - Jl We ' X = Xo' 
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DROP FORMATION IN A TRANSIENT REGIME OF DISPERSION 657 

where the coordinate of the mass center x0 is determined from the length of a jet remaining 
after drop detachment. The values of x0 in calculations are introduced from data of the 
experiments. The system (3.9) simplified in such a way has an exact solution of the form: 

_ 1 ( t-t0 Bo - - 2 ) 

m = 2 y2We + 12We (t-to) ' 

(3.13) 
_ , /2 1 Bo - -
v = 1- V We +3 We (t-to), 

X= X0 + (1-V ~e) (1-i;,)+ ! !~ (l-i;,)2
• 

The end of this stage is determined by the moment when the drop reaches the plane of the 
orifice (Fig. 2b) and hence the condition in this theoretical description is: 

(3.14) 

where R ( dimensionless radius of spherical drop) is defined by 

(3.15) 

For the moment determined by (3.14) we can find from (3.13) the mass m1 and the period 
~ of the 1st stage. This mass will be applied in the initial condition of the 2nd stage. 

It should be noted that this simple solution (3.13) admits three cases presented schemat
ically in Fig. 5: 

x,R a x,R b x,R • c 
X a 

Xo Xo 

FIG. 5. Graphs of relations for x(t) and R(i) predicted by the theory in the 1st stage of formation when: 
a) U < Ui> b) U = Ui> c) U > Ui . 

a) where graphs of x(i) and ii.(i) intersect, 
b) where the curves are tangent in the point t = ~ , 
c) where there is no common point. 

All these cases were observed in experiments. The situation from Fig. 5b determines in 
this mathematical model the jetting point when U = Ui. If U is greater than Ui (Fig. Se), 
the jet does not contract up to the plane of an orifice and the jet regime of dispersion is 
reached. 
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658 W. KALITA 

Considering the case from Fig. 5b where the following condition is satisfied: 

(3.16) .X= R, 
dR _ 

---=- =v, 
dt 

the upper limit of the range of the transient regime can 'be estimated through this theoret
ical approach. We noted a slight disagreement between theoretical and experimental 
values of the velocity ~ (experimental values are a little higher than theoretical ones). 

h,x,R 
[cm] 

\ 
3 \ 

\ 
O• 

\ 

~. 

2 

0 

~ 
·~ 

"\> 
\o 

\o 
\ 
\o 
\ 
\ 

os 

\ 
\ 
\ 
\ 
\ 

---- R} calculated from 
-·-·- x the theory For the 
__ h 1ststage of Formation 

oo ooo U=1018[cm/s] 
• • • • • U=11.34 [cm/s} 

Experimental data: .1p g= 218[g/cm2s2j 
6= 18.2 [dynas/cm] 

1.0 15 zo 

FIG. 6. Jet contraction in the 1st stage of formation. 

The diagram in Fig. 6 shows the results of both calculated and measured (from movie 
pictures) heights of the drop h plotted against the time t in the first stage of formation. 

In the 2nd stage, observations show that the shapes of the drop pendant on the orifice 
are very close to those described by the statics [27]. Nevertheless, static stability solutions 
[27, 28] seem to be inapplicable to determine the values of the mass of the drop which 
begins to travel from the orifice (i.e. the final mass of the second stage m2 ). We assume that 
in this stage the spherical drop remains tangent to the plane of the orifice 

(3.17) 

http://rcin.org.pl



DROP FORMATION IN A TRANSIENT REGIME OF DISPERSION 

and hence the velocity of its mass center is 

(3.18) - - dR - 1 (6- )-2'3 v--- -- m , 
dt 4 

because the equation for the mass increase is 

(3.19) 
diii 1 
dt =4, 

659 

i.e. the whole liquid flowing out of the orifice comes into a drop. For t = t1 is m = m1 

and from (3.19) we get the linear function: 

1 - -
(3.20) iii = iiil + 4 (t-td. 

In order to specify the condition for the end of the 2nd stage it must be noted that when 
the drop grows hanging on the edge of the orifice the variation of the angle () (Fig. 4b) 
is physically admissible due to the 90° angle of the edge of the orifice. We shall suppose 
that the changes . of () in definition (3.2) of the force Fi resulting from interfacial tension 
have such local importance that they are not contradictory with the assumed spherical 
shape of a drop. Next, it is assumed that the angle() is changeable in such a way that the 
first equation of the system (3.9) with the neglected viscid term is satisfied. Hence, the rela
tion for cosO can be written in the form: 

(3.21) () _ We ( 1 -) cos =Bo·m+ 4 1- 3 v, 

where v and iii are already determined by (3.18) and (3.20). The end of the 2nd stage is 
defined by the moment of the beginning of jet creation. The assumption for the shape 
of the jet (3.4) yields the following condition for the moment 

-
(3.22) t = t2 : cosO = 1. 

Substituting it into (3.21) we can find the mass m2 and then x2 = R2 [definition (3.15)]. 
The description of drop formation in the 3rd stage is given by the full system (3.9) 

and the initial condition: 

(3.23) 

where we put v = 0 because in this stage we will neglect the velocity of the spherical 
growing of the drop in favour of the velocity of its motion at the end of a jet. 

The important and difficult problem is the determination of the end of the 3rd stage 
that is physicaJly indicated by the end of the process of the detachment of a drop. The 
theoretical model presented here does not allow for a mathematical description of this 
process. The direct conclusion obtained from the introduced condition for the beginning 
of the 1st stage is: 

(3.24) 

as the condition for the end of integrating the system (3.9) and the end of the period of 
drop formation. In this way we obtain from (3.9) the final mass of the drop m3 that tears 
off the jet. 

9 Arch. Mech. Stos. nr 4!75 
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The exemplary relations for m(i), v(t) and :X(i) in the whole period of formation pre
dicted by the presented theoretical approach in the transient regime are illustrated in 
Fig. 7. The results of theoretical calculations in the form of a relation between the height 

t 

0~--~------------------~----------~ 
fa t, t; ~ 

t----
FIG. 7. Typical relations for mass m, velocity v and the coordinate x of a drop as the functions of time-t 

predicted by the theoretical approach. 

h and the total volume V of a drop and a jet are compared with the results of the experi
mental measurements in Fig. 8 for the experimental value of Bond number Bo = 0.0061. 
Considering the influence of the simplifying assumption of drop sphericity it is of interest 
to note that the agreement between theoretical and experimental (smoothed) curves 
seems to be reasonable in the 1st and the 2nd stages. In the 3rd stage of drop formation 
during which a relatively great drop is in motion at the end of a short jet, the picture 
indicates that the resistance of drop motion is greater than it is predicted by the theoretical 
model. Moreover, it leads to the fact that the masses m3 obtained from calculations are 
smaller than the respective experimental values (Fig. 9). 
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Fio. 8. Theoretical heights of drop in the period of formation compared with the experiments (Bo = 0.0061). 

4. Concluding remarks 

The experimental study of drop formation was performed in a system where one liquid 
flows out of the orifice into another immiscible liquid. The liquids of the system were 
chosen in such a way that they had almost the same density. This corresponds to the very 
small Bond numbers and has the advantage that the experimental procedure is greatly 

9* 
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FIG. 9. Calculated and measured values of drop mass after detachment. 

W. KALITA 

simplified. This advantage is considerable in a study concerning the transient regime of 
dispersion where little information is available. The process of drop formation in this 
regime is described in the paper by a simple theory that, exploits the characteristic features 
of the process observed experimentally. The agreement between the experimental and the 
theoretically predicted course of formation was found to be reasonable, considering the 
simplicity of the theoretical approach. It can be said that in order to obtain better agreement 
the assumptions in theory could be modified in some directions: 

the condition of constant velocity in a jet may be replaced by a model of flow in a jet, 
the spherical shape of a drop can be modified to a shape derived e.g. from statics, etc. 
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