## BRIEF NOTES

## Additional comments on Suliciu, Malvern and Cristescu's paper. "Remarks concerning the "plateau" in dynamic plasticity(*)"

## I. SULICIU (BUCURESTI)

IT is proved that under certain loading conditions, a constitutive equation of type (1) with $\psi$ of the form (2), where $\alpha \in(0,1)$, may admit an absolute plateau. This result corrects the false statement contained in the previous paper, for $\alpha=1 / 2$.

THE assertion that the semilinear rate type constitutive equation

$$
\begin{equation*}
\dot{\sigma}=E \dot{\varepsilon}+\psi(\varepsilon, \sigma) \tag{1}
\end{equation*}
$$

where

$$
\psi(\varepsilon, \sigma)= \begin{cases}-k(\sigma-f(\varepsilon))^{\alpha}, & \sigma>f(\varepsilon)  \tag{2}\\ 0 & \sigma \leqslant f(\varepsilon)\end{cases}
$$

for $\sigma \geqslant 0$ and $\varepsilon \geqslant 0$, with $\alpha=1 / 2$, can not admit an absolute plateau, is false. We arrived to this conclusion by applying formula (3.5)( ${ }^{1}$ ). It was proved by Suliciu $[15,19]$ that formula (2.11) can be applied to a semi-linear constitutive equation (1), in the case when $\psi$ is continuous on some domain $\mathscr{D}$ and possesses bounded partial derivatives on $\mathscr{D}$. The function $\psi$ given by (2) has no bounded partial derivatives on the domain $\mathscr{D}=\{(\varepsilon, \sigma)$; $\sigma>f(\varepsilon), \varepsilon>0, \sigma>0\}$, the domain of interest for the instantaneous impacts discussed here. Thus, the formula (3.5) does not hold.

We shall prove now, for a special class of histories of strain (i.e. for such histories of strain that appear close to the impacted end, when a bar is impacted with constant velocity), that the formula (2.11) can be applied and

$$
\begin{equation*}
0 \leqslant \int_{t_{0}}^{t}\left[\exp -\int_{t_{0}}^{s} \frac{\partial \mu}{\partial \tau}\left(\varepsilon\left(s_{1}\right), \tau\left(s_{1}\right)\right) d n_{1}\right] \frac{\partial \mu}{\partial \varepsilon} \frac{\partial \varepsilon}{\partial X} d s \leqslant \text { const } \tag{3}
\end{equation*}
$$

[^0]for any $\geqslant t_{0}$, while
\[

$$
\begin{equation*}
\exp \left[\int_{t_{0}}^{t} \frac{\partial \mu}{\partial \tau}(\varepsilon(s), \tau(s)) d s\right] \rightarrow 0 \quad \text { when } \quad t \rightarrow \tilde{t}_{*}<\infty . \tag{4}
\end{equation*}
$$

\]

This will lead us to the conclusion that an absolute plateau for $\varepsilon, v$ and $\sigma$ is possible.
Since, close to the impacted end, a jump in strain $\varepsilon_{i}>\varepsilon_{Y}$ is found and, as the corresponding stress lies on the instantaneous curve (in this case on Hooke's line), one has $\sigma_{i}=E \varepsilon_{i}>f\left(\varepsilon_{i}\right)$. Therefore, in the formula (2.9), $\psi$ is computed for $\left(\varepsilon_{i}, \sigma_{i}\right) \in \mathscr{D}$ at $t=t_{0}$, with $\tau\left(t_{0}\right)=0$ (and obviously $\partial \mathscr{F} / \partial \tau=1$ ); thus (2.11) is valid as long as $(\varepsilon(t)$, $\sigma(t)=E \varepsilon(t)+\tau(t)) \in \mathscr{D}$.

Now, one will prove that if $\varepsilon$ reaches a plateau (in time and space) above a curve $\Gamma$ from the characteristic plane, then there exists a curve $\Gamma^{*}$ above $\Gamma$, where $v$ and $\sigma$ also reach a plateau. The proof of all these facts is based on the following

Proposition. The initial value problem

$$
\begin{equation*}
\dot{\tau}=-k(\tau+\Omega)^{\alpha}, \quad \tau\left(t_{0}\right)=0 \tag{5}
\end{equation*}
$$

with $\alpha \in(0,1)$ and $\Omega:\left[t_{0}, \infty\right) \rightarrow R, \Omega \in C^{1}, \Omega\left(t_{0}\right)=\Omega_{0}>0, \Omega(t)>0$ for all $t \in\left[t_{0}, \infty\right)$, $\dot{\Omega}(t)>0$ for all $t \in\left[t_{0}, t_{*}\right)$ and $\dot{\Omega}(t)=0$ for all $t \in\left[t_{*}, \infty\right)$, admits a unique solution of class $C^{1}\left[t_{0}, \infty\right)$ (see for instance Hartman Ch. III, §6 [18]). Moreover, the solution of problem (5) has the following properties:
a) if

$$
\begin{equation*}
0<t_{*}+\frac{\Omega_{*}^{1-\alpha}}{k(1-\alpha)}+t_{0} \tag{6}
\end{equation*}
$$

where $\Omega_{*}=\Omega\left(t_{*}\right)$, then there exists $\tilde{t_{*}}>t_{*}$ such that

$$
\begin{equation*}
\tau(t)+\Omega(t)>0 \quad \text { for all } t \in\left[t_{0}, \tilde{t_{*}}\right) \tag{7}
\end{equation*}
$$

b) in the interval $\left[t_{*}, \infty\right)$, the solution of the Eq. (5) has the following expression:

$$
\tau(t)=\left\{\begin{array}{lc}
-\Omega_{*}+\left[\left(\tau_{*}+\Omega_{*}\right)^{1-\alpha}-k(1-\alpha)\left(t-t_{*}\right)\right]^{\frac{1}{1-\alpha}}, & t \in\left[t_{*}, \tilde{t}_{*}\right],  \tag{8}\\
-\Omega_{*}, & \tilde{t}_{*}<t,
\end{array}\right.
$$

which is obtained by direct integration of the Eq. (5) over the interval $\left[t_{*}, \infty\right)$, with $\tau\left(t_{*}\right)=\tau_{*}$.
Proof. Let us prove assertions (7) and (8). Denote by $\Omega_{*}=\Omega\left(t_{*}\right) \geqslant \Omega(t)$ for all $t \in\left[t_{0}, \infty\right)$; then we have

$$
\begin{equation*}
-k(\tau+\Omega)^{\alpha} \geqslant-k\left(\tau+\Omega_{*}\right)^{\alpha} \quad \text { for all } \quad t \in\left[t_{0}, \infty\right) \tag{9}
\end{equation*}
$$

and therefore (see for instance Hartman Ch. III, §4 [18])

$$
\begin{equation*}
\tau(t) \geqslant \tau_{0}(t) \quad \text { for all } \quad t \in\left[t_{0}, \infty\right) \tag{10}
\end{equation*}
$$

where $\tau(t)$ is the solution of problem (5) and $\tau_{0}(t)$ is the solution of the following problem:

$$
\begin{equation*}
\dot{\tau}_{0}=-k\left(\tau_{0}+\Omega_{*}\right)^{\alpha}, \quad \tau_{0}\left(t_{0}\right)=0 \tag{11}
\end{equation*}
$$

$\tau_{0}(t)$ has the following form:
(12) $\quad \tau_{0}(t)= \begin{cases}-\Omega_{*}+\left[\Omega_{*}^{1-\alpha}-k(1-\alpha)\left(t-t_{0}\right)\right]^{\frac{1}{1-\alpha}} & \text { for } t \in\left[t_{0}, \frac{\Omega_{*}^{1-\alpha}}{k(1-\alpha)}\right], \\ -\Omega_{*} & \text { for } t>\frac{\Omega_{*}^{1-\alpha}}{k(1-\alpha)}+t_{0} .\end{cases}$

From (10) and (12) we find that

$$
\begin{equation*}
\tau(t)>-\Omega_{*} \quad \text { for } \quad t \in\left[t_{*}, \tilde{t}_{*}\right) \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{t}_{*}=t_{*}+\frac{\left(\tau_{*}+\Omega_{*}\right)^{1-\alpha}}{k(1-\alpha)} \tag{14}
\end{equation*}
$$

and thus (7) and (8) follow.
We now choose $\Omega=E \varepsilon-f(\varepsilon)$; since $\mathscr{F}=E \varepsilon+\tau$, with $\tau\left(t_{0}\right)=0$, we have

$$
\mu(\varepsilon, \tau)=\psi(\varepsilon, \tau+E \varepsilon)
$$

and from (2.12) and (2) we obtain

$$
\begin{equation*}
\frac{\partial \mu}{\partial \varepsilon}=\frac{\partial \psi}{\partial \varepsilon}=-k \frac{E-f^{\prime}(\varepsilon)}{(E \varepsilon-f(\varepsilon)+\tau)^{1-\alpha}}, \quad \frac{\partial \mu}{\partial \tau}=-\frac{k \alpha}{(E \varepsilon-f(\varepsilon)+\tau)^{1-\alpha}} \tag{15}
\end{equation*}
$$

Now, since we assumed that $\varepsilon$ has reached a plateau (in time and space) above a curve $\Gamma$, i.e. for $t>t_{*}=g\left(X_{*}\right),\left(X_{*}, t_{*}\right) \in \Gamma, \frac{\partial \varepsilon}{\partial X}\left(X_{*}, t\right)=0, \frac{\partial \varepsilon}{\partial t}\left(X_{*}, t\right)=0$, then from (7) it follows that $\left(\varepsilon\left(t_{*}\right), \sigma\left(t_{*}\right)\right) \in \mathscr{D}$ (i.e. this point is not on the relaxation curve), hence $\partial \mu / \partial \varepsilon$ and $\partial \mu / \partial \tau$ are finite and therefore (3) follows, since its left-hand side remains constant for $t \geqslant t_{*}$.

From (8) and (15) we obtain

$$
\frac{\partial \mu}{\partial \tau}=-\frac{k \alpha}{\left(\tau_{*}+\Omega_{*}\right)^{1-\alpha}-k(1-\alpha)\left(t-t_{*}\right)}, \quad t \in\left[t_{*}, \tilde{t}_{*}\right)
$$

so we can write

$$
\exp \left(\int_{t_{0}}^{t} \frac{\partial \mu}{\partial \tau} d s\right)=\left[\exp \left(\int_{t_{0}}^{t_{*}} \frac{\partial \mu}{\partial \tau} d s\right)\right] \frac{1}{\left(\tau_{*}+\Omega_{*}\right)}\left[\left(\tau_{*}+\Omega_{*}\right)^{1-\alpha}-k(1-\alpha)\left(t-t_{*}\right)\right]^{\frac{\alpha}{1-\alpha}}
$$

for all $t \in\left[t_{*}, \tilde{t}_{*}\right)$. From this equality and (14) the assertion (4) follows and thus a plateau in velocity and stress will appear for $t \geqslant t_{*}$.

In his numerical analysis on rate effect, Kukudjanov [9] did use examples of type (2) for $\alpha=1 / 2, \alpha=1, \alpha=3$ and $\alpha=5$. A constitutive equation of type (1), with $\psi$ given by (2), cannot possess an absolute plateau for $\alpha \geqslant 1$, as can easily be seen by applying formula (3.5); indeed, in these cases, formula (3.5) holds as the conditions of the theorem cited above ( $[15,19]$ ) are satisfied.

## References

15. The correct address of reference [15] of the paper under discussion is: vol. 25, No. 1, pp. 53-170, 1973, in the same Journal.
16. P. Hartman, Ordinary Differential Equations, John Wiley \& Sons Inc., New York-London-Sydney 1964.
17. I. Suliciu, Classes of discontinuous motions in elastic and rate type materials. One-dimensional case, Archives of Mechanics, 26, 687-711, 1974.

ROUMANIAN ACADEMY OF SCIENCES
INSTITUTE OF MATHEMATICS, BUCURESTI.

Received October 9, 1974.


[^0]:    (*) Archives of Mechanics, 24, 5-6, 999-1011, 1972.
    ${ }^{1}$ ) Relations with two groups of numbers refer to the paper under discussion.

