BRIEF NOTES

Additional comments on Suliciu, Malvern and Cristescu's paper. "Remarks concerning the "plateau" in dynamic plasticity(*)"

I. SULICIU (BUCURESTI)

IT is proved that under certain loading conditions, a constitutive equation of type (1) with ψ of the form (2), where $\alpha \in (0,1)$, may admit an absolute plateau. This result corrects the false statement contained in the previous paper, for $\alpha = 1/2$.

THE assertion that the semilinear rate type constitutive equation

(1)
$$\dot{\sigma} = E\dot{\varepsilon} + \psi(\varepsilon, \sigma)$$

where

(2)
$$\psi(\varepsilon, \sigma) = \begin{cases} -k (\sigma - f(\varepsilon))^{\alpha}, & \sigma > f(\varepsilon), \\ 0 & \sigma \leq f(\varepsilon), \end{cases}$$

for $\sigma \ge 0$ and $\varepsilon \ge 0$, with $\alpha = 1/2$, can not admit an absolute plateau, is false. We arrived to this conclusion by applying formula $(3.5)(^1)$. It was proved by SULICIU [15, 19] that formula (2.11) can be applied to a semi-linear constitutive equation (1), in the case when ψ is continuous on some domain \mathcal{D} and possesses bounded partial derivatives on \mathcal{D} . The function ψ given by (2) has no bounded partial derivatives on the domain $\mathcal{D} = \{(\varepsilon, \sigma); \sigma > f(\varepsilon), \varepsilon > 0, \sigma > 0\}$, the domain of interest for the instantaneous impacts discussed here. Thus, the formula (3.5) does not hold.

We shall prove now, for a special class of histories of strain (i.e. for such histories of strain that appear close to the impacted end, when a bar is impacted with constant velocity), that the formula (2.11) can be applied and

(3)
$$0 \leq \int_{t_0}^{t} \left[\exp - \int_{t_0}^{s} \frac{\partial \mu}{\partial \tau} \left(\varepsilon(s_1), \tau(s_1) \right) dn_1 \right] \frac{\partial \mu}{\partial \varepsilon} \frac{\partial \varepsilon}{\partial X} ds \leq \text{const}$$

^(*) Archives of Mechanics, 24, 5-6, 999-1011, 1972.

⁽¹⁾ Relations with two groups of numbers refer to the paper under discussion.

for any $\ge t_0$, while

(4)
$$\exp\left[\int_{t_0}^{t} \frac{\partial \mu}{\partial \tau} (\varepsilon(s), \tau(s)) ds\right] \to 0 \quad \text{when} \quad t \to \tilde{t}_* < \infty.$$

This will lead us to the conclusion that an absolute plateau for ε , v and σ is possible.

Since, close to the impacted end, a jump in strain $\varepsilon_i > \varepsilon_r$ is found and, as the corresponding stress lies on the instantaneous curve (in this case on Hooke's line), one has $\sigma_i = E\varepsilon_i > f(\varepsilon_i)$. Therefore, in the formula (2.9), ψ is computed for $(\varepsilon_i, \sigma_i) \in \mathcal{D}$ at $t = t_0$, with $\tau(t_0) = 0$ (and obviously $\partial \mathscr{F} / \partial \tau = 1$); thus (2.11) is valid as long as $(\varepsilon(t), \sigma(t) = E\varepsilon(t) + \tau(t)) \in \mathcal{D}$.

Now, one will prove that if ε reaches a plateau (in time and space) above a curve Γ from the characteristic plane, then there exists a curve Γ^* above Γ , where v and σ also reach a plateau. The proof of all these facts is based on the following

PROPOSITION. The initial value problem

(5)
$$\dot{\tau} = -k(\tau + \Omega)^{\alpha}, \quad \tau(t_0) = 0$$

with $\alpha \in (0, 1)$ and $\Omega: [t_0, \infty) \to R$, $\Omega \in C^1$, $\Omega(t_0) = \Omega_0 > 0$, $\Omega(t) > 0$ for all $t \in [t_0, \infty)$, $\dot{\Omega}(t) > 0$ for all $t \in [t_0, t_*)$ and $\dot{\Omega}(t) = 0$ for all $t \in [t_*, \infty)$, admits a unique solution of class $C^1[t_0, \infty)$ (see for instance HARTMAN Ch. III, §6 [18]). Moreover, the solution of problem (5) has the following properties:

a) if

(6)
$$0 < t_* + \frac{\Omega_*^{1-\alpha}}{k(1-\alpha)} + t_0,$$

where $\Omega_* = \Omega(t_*)$, then there exists $\tilde{t_*} > t_*$ such that

(7)
$$\tau(t) + \Omega(t) > 0 \quad \text{for all } t \in [t_0, t_*);$$

b) in the interval $[t_*, \infty)$, the solution of the Eq. (5) has the following expression:

(8)
$$\tau(t) = \begin{cases} -\Omega_* + [(\tau_* + \Omega_*)^{1-\alpha} - k(1-\alpha)(t-t_*)]^{\frac{1}{1-\alpha}}, & t \in [t_*, \tilde{t}_*], \\ -\Omega_*, & \tilde{t}_* < t, \end{cases}$$

which is obtained by direct integration of the Eq. (5) over the interval $[t_*, \infty)$, with $\tau(t_*) = \tau_*$.

Proof. Let us prove assertions (7) and (8). Denote by $\Omega_* = \Omega(t_*) \ge \Omega(t)$ for all $t \in [t_0, \infty)$; then we have

(9)
$$-k(\tau+\Omega)^{\alpha} \ge -k(\tau+\Omega_{*})^{\alpha}$$
 for all $t \in [t_{0}, \infty)$

and therefore (see for instance HARTMAN Ch. III, §4 [18])

(10)
$$\tau(t) \ge \tau_0(t)$$
 for all $t \in [t_0, \infty)$,

where $\tau(t)$ is the solution of problem (5) and $\tau_0(t)$ is the solution of the following problem:

(11)
$$\dot{\tau}_0 = -k(\tau_0 + \Omega_*)^{\alpha}, \quad \tau_0(t_0) = 0$$

 $\tau_0(t)$ has the following form:

http://rcin.org.pl

(12)
$$\tau_{0}(t) = \begin{cases} -\Omega_{*} + [\Omega_{*}^{1-\alpha} - k(1-\alpha)(t-t_{0})]^{\frac{1}{1-\alpha}} & \text{for} \quad t \in \left[t_{0}, \frac{\Omega_{*}^{1-\alpha}}{k(1-\alpha)}\right], \\ -\Omega_{*} & \text{for} \quad t > \frac{\Omega_{*}^{1-\alpha}}{k(1-\alpha)} + t_{0}. \end{cases}$$

From (10) and (12) we find that

(13)
$$\tau(t) > -\Omega_* \quad \text{for} \quad t \in [t_*, t_*),$$

where

(14)
$$\tilde{t}_{*} = t_{*} + \frac{(\tau_{*} + \Omega_{*})^{1-\alpha}}{k(1-\alpha)}$$

and thus (7) and (8) follow.

We now choose $\Omega = E\varepsilon - f(\varepsilon)$; since $\mathscr{F} = E\varepsilon + \tau$, with $\tau(t_0) = 0$, we have

$$\mu(\varepsilon,\,\tau)=\psi(\varepsilon,\,\tau+E\varepsilon)$$

and from (2.12) and (2) we obtain

(15)
$$\frac{\partial \mu}{\partial \varepsilon} = \frac{\partial \psi}{\partial \varepsilon} = -k \frac{E - f'(\varepsilon)}{(E\varepsilon - f(\varepsilon) + \tau)^{1-\alpha}}, \qquad \frac{\partial \mu}{\partial \tau} = -\frac{k\alpha}{(E\varepsilon - f(\varepsilon) + \tau)^{1-\alpha}}.$$

Now, since we assumed that ε has reached a plateau (in time and space) above a curve Γ , i.e. for $t > t_* = g(X_*), (X_*, t_*) \in \Gamma, \frac{\partial \varepsilon}{\partial X}(X_*, t) = 0, \frac{\partial \varepsilon}{\partial t}(X_*, t) = 0$, then from (7) it follows that $(\varepsilon(t_*), \sigma(t_*)) \in \mathcal{D}$ (i.e. this point is not on the relaxation curve), hence $\partial \mu / \partial \varepsilon$ and $\partial \mu / \partial \tau$ are finite and therefore (3) follows, since its left-hand side remains constant for $t \ge t_*$.

From (8) and (15) we obtain

$$\frac{\partial \mu}{\partial \tau} = -\frac{k\alpha}{(\tau_* + \Omega_*)^{1-\alpha} - k(1-\alpha)(t-t_*)}, \quad t \in [t_*, \tilde{t}_*)$$

so we can write

$$\exp\left(\int_{t_0}^t \frac{\partial \mu}{\partial \tau} \, ds\right) = \left[\exp\left(\int_{t_0}^{t_*} \frac{\partial \mu}{\partial \tau} \, ds\right)\right] \frac{1}{(\tau_* + \Omega_*)} \left[(\tau_* + \Omega_*)^{1-\alpha} - k\left(1-\alpha\right)\left(t-t_*\right)\right]^{\frac{\alpha}{1-\alpha}}$$

for all $t \in [t_*, \tilde{t}_*)$. From this equality and (14) the assertion (4) follows and thus a plateau in velocity and stress will appear for $t \ge t_*$.

In his numerical analysis on rate effect, KUKUDJANOV [9] did use examples of type (2) for $\alpha = 1/2$, $\alpha = 1$, $\alpha = 3$ and $\alpha = 5$. A constitutive equation of type (1), with ψ given by (2), cannot possess an absolute plateau for $\alpha \ge 1$, as can easily be seen by applying formula (3.5); indeed, in these cases, formula (3.5) holds as the conditions of the theorem cited above ([15, 19]) are satisfied.

http://rcin.org.pl

References

- 15. The correct address of reference [15] of the paper under discussion is: vol. 25, No. 1, pp. 53-170, 1973, in the same Journal.
- 18. P. HARTMAN, Ordinary Differential Equations, John Wiley & Sons Inc., New York-London-Sydney 1964.
- 19. I. SULICIU, Classes of discontinuous motions in elastic and rate type materials. One-dimensional case, Archives of Mechanics, 26, 687-711, 1974.

ROUMANIAN ACADEMY OF SCIENCES INSTITUTE OF MATHEMATICS, BUCURESTI.

Received October 9, 1974.