#### PRACE EKSPERYMENTALNE



## Biodegradacja zanieczyszczeń przez osad czynny immobilizowany w nośniku ceramicznym

Irena Wojnowska-Baryła<sup>1</sup>, Andrzej Babuchowski<sup>2</sup>, Magdalena Zielińska<sup>1</sup>

<sup>1</sup>Katedra Inżynierii Ochrony Środowiska, Uniwersytet Warmińsko-Mazurski, Olsztyn

<sup>2</sup>Instytut Biotechnologii, Uniwersytet Warmińsko-Mazurski, Olsztyn

# Biodegradation of pollutions using an activated sludge immobilized inside the ceramic carrier

#### Summary

Carbon and nitrogen removal in dependence on the retention time and pollution loading was investigated using biomass immobilized inside macroporous ceramic carrier. Efficiency of carbon removal was 78%, nitrification rate - 91,7%, denitrification rate - 64,9%, when the technological parameter were: volumetric loading 5,9 g/dm<sup>3</sup> × d, hydraulic retention time 34 min, intrinsic recirculation 50 dm<sup>3</sup>/h.

#### Key words:

immobilized biomass, membrane bioreactor, macroporous carriers, carbon and nitrogen removal.

## 1. Wstęp

#### Adres do korespondencji

Magdalena Zielińska, Katedra Inżynierii Ochrony Środowiska, Uniwersytet Warmińsko-Mazurski, 10-957 Olsztyn-Kortowo.

#### biotechnologia

1 (52) 161-170 2001

Nośniki ceramiczne są coraz częściej stosowane do immobilizacji mikroorganizmów. Obowiązującymi standardami nośników makroporowatych są: zmienna wielkość por struktury nośnika od 10 do100 µm, 30-50% udział por w objętości nośnika, mechaniczna stabilność, możliwość sterylizacji nośnika, wysokie obciążenie nośnika unieruchamianą biomasą, optymalnie krótka droga dyfuzji pomiędzy zewnętrzną i wewnętrzną powierzchnią nośnika, różna wielkość i kształt nośnika, prosta powtarzalna procedura zasiedlania porowatego nośnika, łatwość zwiększania skali. Materiały, z których produkowane są nośniki ceramiczne to glin, mieszanina cyrkonu i aluminium, cyrkonu i węgla, krzem, mieszanina krzemu i węgla.

Mechaniczna stabilność nośnika, możliwość wysokiego obciążenia immobilizowaną biomasą, warunki hydrauliczne w reaktorze powodują, że reaktory kolumnowe z immobilizowaną w porach nośnika biomasą mogą znaleźć szerokie zastosowanie w oczyszczaniu ścieków. W pracy przedstawiono wyniki badań technologicznych oczyszczania ścieków komunalnych przez biomasę immobilizowaną w nośniku ceramicznym.

### 2. Metodyka badań

W badaniach wykorzystano makroporowaty nośnik w kształcie walca wykonany ze spieku węglowo-krzemowego. Średnica nośnika wynosiła 25 mm, a kanałów wewnętrznych 2 mm. Nośnik ceramiczny z unieruchomioną biomasą stanowił stacjonarne wypełnienie reaktora kolumnowego (rys. 1). Stopień recyrkulacji wewnętrznej w reaktorze wynosił 50 dm<sup>3</sup>/h. Od dołu do reaktora doprowadzano powietrze w ilości zapewniającej w ściekach odpływających z reaktora zawartość tlenu na poziomie 2,5 mg/dm<sup>3</sup>.

Porowatą strukturę ceramiczną membrany zasiedlono osadem czynnym w wyniku 24 h cyrkulacji biomasy w reaktorze. Początkowe stężenie osadu czynnego do



Rys. 1. Bioreaktor zmembraną ceramiczną zasidloną osadem czynnym. immobilizacji wynosiło 12 g/dm<sup>3</sup>. Po zakończeniu zasiedlania stężenie osadu czynnego, którym zasiedlano nośnik, obniżyło się do 6 g/dm<sup>3</sup>.

Badania technologiczne przeprowadzono w dwóch cyklach różniących się stężeniem zanieczyszczeń w ściekach komunalnych poddawanych biodegradacji (tab. 1).

#### Tabela 1

Wskaźniki zanieczyszczeń w ściekach wykorzystanych w badaniach

| Cykl | ChZT [mg/dm <sup>3</sup> ] | N <sub>og</sub> [mg/dm <sup>3</sup> ] | N-NH <sub>4</sub> [mg/dm <sup>3</sup> ] | Zawiesina [mg/dm <sup>3</sup> ] |
|------|----------------------------|---------------------------------------|-----------------------------------------|---------------------------------|
| Ι    | 150,0                      | 49,5                                  | 28,0                                    | 75,0                            |
| II   | 982,6                      | 132,0                                 | 100,0                                   | 491,0                           |

W prezentowanym doświadczeniu badano przemiany związków węglowych i azotowych w osadzie czynnym immobilizowanym w nośniku ceramicznym w zależności od czasu zatrzymania ścieków w reaktorze. Wartości stosowanych w badaniach parametrów technologicznych przedstawiono w tabeli 2.

#### Tabela 2

Parametry technologiczne zastosowane w I i II cyklu badań

| Parametry                                   | Jednostki          | Wartości |       |       |      |
|---------------------------------------------|--------------------|----------|-------|-------|------|
| Czas zatrzymania w reaktorze                | h                  | 2,1      | 1,1   | 0,6   | 0,3  |
| Natężenie przepływu ścieków                 | dm <sup>3</sup> /d | 0,437    | 0,883 | 1,766 | 3,12 |
| Obciążenie nośnika ładunkiem zanieczyszczeń |                    |          |       |       |      |
| cykl I                                      | $g/dm^3 \times d$  | 2,0      | 3,4   | 5,9   | 9,9  |
| cykl II                                     |                    | 12,6     | 20,4  | 39,5  | 71,4 |

Badania w cyklu I i II prowadzono przy czterech czasach zatrzymania ścieków w reaktorze (czas reakcji), tj. 2,1; 1,1; 0,6; 0,3 h. Czas trwania badań przy stałym czasie zatrzymania ścieków w reaktorze wynosił około 30 dni. W ściekach dopływających i odpływających z reaktora kontrolowano: stężenie związków organicznych oznaczanych jako ChZT (1), stężenie związków azotowych w formie azotu amonowego (2,3), azotu azotanowego (4) i azotu ogólnego (5) w dopływie, stężenie zawiesin ogólnych w ściekach dopływających i odpływających z reaktora (6).

## 3. Omówienie wyników badań

Biodegradacja związków organicznych przez immobilizowaną biomasę zachodziła w warunkach napowietrzania. W cyklu I przy zmieniających się czasach biodegradacji od 2,1 h do 0,3 h obciążenie nośnika ładunkiem zanieczyszczeń wynosiło od 2,0 g/dm<sup>3</sup> × d do 9,9 g/dm<sup>3</sup> × d (tab. 2). Sprawność usuwania związków węglowych ze ścieków komunalnych w cyklu I była zbliżona i wynosiła powyżej 78%. Obserwowano natomiast różnice w wykorzystaniu związków węglowych na syntezę biomasy. Ilość związków węglowych usuniętych w procesie syntezy biomasy zmieniała się wraz ze skracaniem czasu zatrzymania w reaktorze od 0,2 gsm/gChZT × d do 0,1 gsm/gChZT × d.

Czas reakcji wpływał na przebieg utleniania azotu amonowego przez immobilizowaną biomasę. Skrócenie czasu zatrzymania ścieków w reaktorze do 0,3 h i wzrost obciążenia objętości nośnika ładunkiem zanieczyszczeń do 9,9 g/dm<sup>3</sup> × d spowodowały obniżenie sprawności nitryfikacji z 96,9 do 75,2%. W odpływie z reaktora obserwowano wzrost stężenia azotu amonowego z 0,4 mg/dm<sup>3</sup> do 7,4 mgN-NH<sub>4</sub>/dm<sup>3</sup>. W osadzie czynnym immobilizowanym sprawność denitryfikacji była najwyższa – 64,9% przy obciążeniu nośnika ładunkiem zanieczyszczeń wynoszącym 5,9 g/dm<sup>3</sup> × d. Stopień usunięcia związków azotowych ze ścieków wyniósł 68,1%. Porównywalną sprawność usunięcia związków azotowych wynoszącą około 58% przez biomasę immobilizowaną uzyskano przy obciążeniu 2,0 i 3,4 g/dm<sup>3</sup> × d.

W przedstawionych wynikach wskazuje się, że w zależności od obciążenia objętości nośnika ładunkiem zanieczyszczeń sprawność usuwania związków azotowych ze ścieków zależała od przebiegu nitryfikacji lub denitryfikacji w osadzie czynnym immobilizowanym. Przy czasie zatrzymania 2,1 h czynnikiem ograniczającym była denitryfikacja, a przy czasie zatrzymania 0,3 h nitryfikacja, której sprawność wynosiła 75,2% (tab. 3).

Tabela 3

(at a d a batadanta makaila

| sprawnosc | питупкаслі і цепитупкаслі | ji w mimobilizowaliej b | nomasie w Latelnosti | ou obciązenia nosnika |
|-----------|---------------------------|-------------------------|----------------------|-----------------------|
| ładunkiem | zanieczyszczeń w cyklu I  | [                       |                      |                       |
|           |                           |                         |                      |                       |

| Czas zatrzymania<br>[h] | Obciążenie<br>objętościowe<br>[g/dm <sup>3</sup> ×d] | Sprawność nitryfikacji<br>[%] | Sprawność denitryfikacji<br>[%] | Sprawność usuwania<br>związków azotowych<br>[%] |  |
|-------------------------|------------------------------------------------------|-------------------------------|---------------------------------|-------------------------------------------------|--|
| 2,1                     | 2,0                                                  | 96,9                          | 55,9                            | 58,3                                            |  |
| 1,1                     | 3,4                                                  | 96,0                          | 54,6                            | 57,8                                            |  |
| 0,6                     | 5,9                                                  | 91,7                          | 64,9                            | 68,1                                            |  |
| 0,3                     | 9,9                                                  | 75,2                          | 45,9                            | 48,9                                            |  |

Na rysunku 2 przedstawiono przebieg usuwania związków azotowych przez immobilizowaną na nośniku ceramicznym biomasę. W odpływie z reaktora przy czasie zatrzymania 2,1 h dominował azot utleniony w formie azotanów w ilości około 20 mg/dm<sup>3</sup>, natomiast stężenie azotu amonowego w ściekach odpływających wynosiło średnio 0,4 mg/dm<sup>3</sup>. Przy optymalnym w cyklu I czasie zatrzymania 0,6 h stężenie azotu amonowego w ściekach odpływających z reaktora wzrosło do 2,2 mg/dm<sup>3</sup>,

#### Biodegradacja zanieczyszczeń przez osad czynny immobilizowany w nośniku ceramicznym



#### czas zatrzymania 0,6 h

#### czas zatrzymania 0,3 h

Rys. 2. Przebieg usuwania związków azotowych przez immobilizowaną biomasę w cyklu I.

a azotu azotanowego obniżyło się średnio do 10 mg/dm<sup>3</sup>. W uzyskanych wynikach wskazuje się na zachodzenie w złożu nitryfikacji i denitryfikacji, pomimo wprowadzania tlenu do reaktora. Udział syntezy biomasy w usuwaniu związków azotowych był niezależny od czasu zatrzymania ścieków w reaktorze i wynosił około 3% ilości związków azotowych do prowadzonych do reaktora.

W cyklu II do biodegradacji wykorzystano ścieki komunalne o wyższej niż w cyklu I zawartości związków organicznych (tab. 1). Spowodowało to wzrost obciążenia objętości nośnika ładunkiem zanieczyszczeń z 12,6 do 71,4 g/dm<sup>3</sup> × d przy czasie zatrzymania 0,3 h.

Pomimo wzrostu obciążenia nośnika ładunkiem zanieczyszczeń sprawność usuwania związków węglowych wynosiła 90%. Udział syntezy biomasy w usuwaniu związków węglowych w cyklu II wynosił od 0,4 do 0,1 gsm/g ChZT  $\times$  d.





#### czas zatrzymania 0,6 h

#### czas zatrzymania 0,3 h

Rys. 3. Przebieg usuwania związków azotowych przez immobilizowaną biomasę w cyklu II.

#### Tabela 4

| Czas zatrzymania<br>[h] | Obciążenie<br>objętościowe<br>[g/dm <sup>3</sup> × d] | Sprawność nitryfikacji<br>[%] | Sprawność denitryfikacji<br>[%] | Sprawność usuwania<br>związków azotowych<br>[%] |  |
|-------------------------|-------------------------------------------------------|-------------------------------|---------------------------------|-------------------------------------------------|--|
| 2,1                     | 12,6                                                  | 74,0                          | 35,4                            | 49,5                                            |  |
| 1,1                     | 20,4                                                  | 72,6                          | 44,2                            | 45,6                                            |  |
| 0,6                     | 39,5                                                  | 58,8                          | 50,6                            | 53,5                                            |  |
| 0,3                     | 71,4                                                  | 25,8                          | 20,5                            | 22,7                                            |  |

Sprawność nitryfikacji i denitryfikacji w biomasie immobilizowanej w zależności od obciążenia nośnika ładunkiem zanieczyszczeń w cyklu II

Sprawność utleniania azotu amonowego przez immobilizowaną biomasę spadła w cyklu II z 74% przy obciążeniu 12,6 g/dm<sup>3</sup> × d do 25,8% przy obciążeniu 71,4 g/dm<sup>3</sup> × d (tab. 4). Pomimo dostępności związków węglowych przy zastosowanych czasach zatrzymania nie obserwowano wysokiej sprawności denitryfikacji. W cyklu II uzyskano spadek sprawności dysymilacyjnej redukcji azotanów w stosunku do cyklu I. Przy obciążeniu 71,4 g/dm<sup>3</sup> × d sprawność usuwania związków azotowych wyniosła zaledwie 22,7% (tab. 4). Najwyższą redukcję związków azotu przez immobilizowany osad czynny obserwowano przy czasie zatrzymania ścieków 0,6 h. Ilość azotu azotanowego w ściekach oczyszczonych zależała zarówno od sprawności nitryfikacji, jak i denitryfikacji w biomasie immobilizowanej (rys. 3).

Zużycie związków azotowych na syntezę biomasy było najwyższe przy czasie zatrzymania – 2,1 h i wynosiło 20,4 mg/dm<sup>3</sup>. Około 14% związków azotowych doprowadzonych ze ściekami komunalnymi zostało wykorzystane w procesie syntezy biomasy. Udział syntezy biomasy w usuwaniu związków azotowych w cyklu II malał i przy czasie zatrzymania 0,3 h wynosił 0,2% (rys. 3).

## 4. Dyskusja

Stosując wysokie obciążenie nośnika ładunkiem zanieczyszczeń i krótki czas reakcji w reaktorze z immobilizowaną biomasą uzyskano wysoką sprawność usuwania związków węglowych i azotowych ze ścieków. Spowodowane to było najprawdopodobniej wysoką koncentracją mikroorganizmów w nośniku. Przyjmuje się, że koncentracja biomasy w nośniku może wynosić powyżej 30 kg/m<sup>3</sup>. Stosowane w systemach osadu czynnego zawieszonego stężenie biomasy wynosi od 3 do 5 kg/m<sup>3</sup> (7). Yamamoto i Win (8) podaje, że krytyczne stężenie mikroorganizmów, pozwalające na utrzymanie stabilnej filtracji w złożu makroporowatym wynosi od 30 do 40 kg/m<sup>3</sup>. Strohwald i Ross (9) wykazał, że w reaktorach membranowych z immobilizowaną biomasą wysokie obciążenie objętościowe i duża wydajność procesu są możliwe dzięki wiekowi unieruchomionej biomasy, dłuższemu niż czas zatrzymania ścieków w reaktorze.

Uzyskanie wysokiej koncentracji biomasy w nośniku powoduje, że stosunek substratu do ilości mikroorganizmów w reaktorach z immobilizowaną w nośniku ceramicznym biomasą jest niski, co skutkuje niewielką ilością powstających osadów nadmiernych (10,11). W omawianym doświadczeniu przyrost immobilizowanej biomasy zależał od czasu zatrzymania ścieków w reaktorze i zmniejszał się pomimo wzrostu obciążenia ładunkiem zanieczyszczeń objętości nośnika. Oznacza to, że nie stosunek substratu do ilości mikroorganizmów, a zmieniające się obciążenie hydrauliczne wpływało na wielkość przyrostu biomasy. Wojnowska-Baryła i in. (12) uzyskali zmniejszenie przyrostu biomasy wraz ze wzrostem stopnia recyrkulacji wewnętrznej, a tym samym wzrostem obciążenia hydraulicznego. W warunkach unieruchomienia biomasy w nośniku makroporowatym dominuje, jak się wydaje, utlenianie komórkowe nad syntezą. W oczyszczaniu ścieków metodą osadu czynnego 2/3 związków organicznych wykorzystywanych jest na syntezę biomasy, a 1/3 na przemiany wewnątrzkomórkowe, co powoduje powstawanie znacznych, w zależności od obciążenia, ilości osadu nadmiernego. W dwóch cyklach badawczych różniących się ilością związków organicznych dopływających do reaktora uzyskano ponad 78% usunięcie tych związków w przedziale czasów zatrzymania od 2,1 do 0,3 h. Równie wysoki stopień redukcji związków węglowych wyrażonych wartością ChZT uzyskali: Chiemchaisri i in. (11) – 80-98%; Pankhania i in. (13) przy ładunku 8,94 kg/m<sup>3</sup> × d i czasie zatrzymania 36 min – 86%; Yamamoto i Win (8) – 95%. Canales i in. (10) w swoich badaniach wykazali, że sprawność usuwania związków węgla ze ścieków w wyniku syntezy oraz utleniania wzrastała wraz ze skracaniem się wieku biomasy.

Większość badań technologicznych na złożach biologicznych, do których należy zaliczyć reaktory z nośnikiem ceramicznym, koncentruje się na rozdzieleniu nitryfikacji od denitryfikacji (14). Projektuje się systemy, w których złoże biologiczne jest szczelnie zamknięte lub przemiany denitryfikacyjne zachodzą w atmosferze azotu gazowego. W literaturze spotyka się doniesienia o równoczesnej nitryfikacji i denitryfikacji zachodzącej na złożach biologicznych, gdy na złoże recyrkulowana jest błona biologiczna, a zatem dodatkowe źródło węgla. W omawianym systemie z biomasą immobilizowaną recyrkulacja wewnętrzna może stanowić, przy niskim stosunku C:N w ściekach, dodatkowe źródło węgla niezbędnego do denitryfikacji (tab. 1). Potwierdzeniem tego jest sprawność denitryfikacji uzyskana w cyklu I w warunkach napowietrzania, przy niskim stosunku węgla do azotu w bioreaktorze z immobilizowaną.

Optymalny stosunek związków C:N w ściekach dopływających na złoże biologiczne i zapewniający szybkość denitryfikacji 0,08 kg/m<sup>3</sup> × d wynosi > 10. W omawianym doświadczeniu w cyklu I stosunek C:N w ściekach wynosił około 3,7, a szybkość denitryfikacji zwiększała się wraz z obciążeniem objętości nośnika ładunkiem zanieczyszczeń. Procesem ograniczającym usuwanie związków azotowych przez biomasę immobilizowaną przy obciążeniu objętościowym nośnika ładunkiem zanieczyszczeń równym 9,9 g/dm<sup>3</sup> × d był proces nitryfikacji, którego sprawność zmalała z ponad 90 do 75,2%.

Chiemchaisri i in. (11) podaje wartość obciążenia krytycznego na poziomie 3-4 kg/m<sup>3</sup> × d, przy którym w reaktorze utrzymują się warunki tlenowe. Wskazują również na zależność stopnia nitryfikacji i usuwania azotu od stosunku bakterii ściśle tlenowych do fakultatywnych, zasiedlających nośnik. Konsekwencją spadku liczebności heterotroficznych tlenowców w nośniku jest obniżenie populacji bakterii nitryfikujących i zahamowanie utleniania azotu amonowego, natomiast wzrost powoduje zwiększenie udziału nitryfikantów i odnowienie procesu nitryfikacji.

Suzuki i in. (15) uzyskali wysoki stopień usunięcia azotu, eksploatując reaktor z membraną przepuszczalną dla gazu. Poddanie natlenionego nośnika z ufcrmowaną błoną nitryfikacyjną działaniu ścieków zawierających węgiel organiczny spowodowało utworzenie warstwy denitryfikującej na istniejącej błonie i w rezultacie symultaniczną nitryfikację i denitryfikację. Konieczne było jednak kontrolowanie grubości błony redukującej w celu utrzymania wysokiego stopnia przenoszenia tlenu i azotu amonowego przez błonę biologiczną. W omawianym doświadczeniu biodegradację związków węglowych i azotowych prowadzono w warunkach napowietrzania. W złożach biologicznych nitryfikacja może być ograniczona procesami przenoszenia tlenu wynikającymi z niskiej rozpuszczalności tlenu w wodzie. Grubość błony biologicznej przekracza zwykle głębokość penetracji tlenu. Użycie czystego tlenu zwiększyłoby jego penetrację, jednak nie stosuje się takich rozwiązań ze względu na wysokie koszty eksploatacyjne.

Z przeprowadzonego doświadczenia wynika, że zwiększenie grubości aktywnej błony i stopnia objętościowej wydajności reakcji jest możliwe przy zastosowaniu wielokanałowych porowatych nośników, których konstrukcja zapewnia skrócenie drogi dyfuzji tlenu i substratu w porach nośnika. Makroporowata struktura nośnika może również wpływać na wielkości pęcherzyków powietrznych, a tym samym na dostępność tlenu mikroorganizmom. Jest to ważna właściwość membran makroporowatych szczególnie w przypadkach: biodegradacji zanieczyszczeń silnie stężonych, wysokich wymagań tlenowych bakterii oraz gdy wolniej rosnące mikroorganizmy są ulokowane głębiej niż rosnące z większą szybkością.

W reaktorach, w których substrat węglowy doprowadzany jest przez membranę, a tlen od strony cieczy, położenie warstwy aktywnej błony zależy od obciążenia nośnika substratem. Przy niskim obciążeniu reakcja ma miejsce na powierzchni membrany, przy wysokim – na granicy faz błona-ciecz (7). Stopień poboru tlenu zależy od grubości błony i stężenia substratu. Suzuki i in. (15) dowodzą, że zastosowanie bioreaktorów wypełnionych membranami skracającymi drogę dyfuzji tlenu pozwala na zmniejszenie zużycia energii na poziomie 40% zużycia w procesach osadu czynnego.

W przedstawionych wynikach wskazuje się, że o szybkości przemian związków azotowych w biomasie immobilizowanej w nośnikach makroporowatych decydować będzie struktura zapewniająca wysoką koncentrację mikroorganizmów, dyfuzję tlenu i substratu w porach nośnika z zasiedloną biomasą.

#### Literatura

- 1. Polska Norma 74/C-04578/03 oznaczanie chemicznego zapotrzebowania tlenu (ChZT) metodą dwuchromianową.
- 2. Polska Norma 73/C-04576/01 oznaczanie azotu amonowego metodą kolorymetryczną z odczynnikiem Nesslera.
- 3. Polska Norma 73/C-04576/02 oznaczanie azotu amonowego metodą miareczkową.
- 4. Polska Norma 73/C-04576/08 oznaczanie azotu azotanowego metodą kolorymetryczną z kwasem fenolodwusulfonowym.
- 5. Polska Norma 73/C-04576/12 oznaczanie azotu ogólnego Kjeldahla.
- 6. Polska Norma 72/C-04559/02 oznaczanie zawiesin ogólnych metodą wagową.
- 7. Casey E., Glennon B., Hamer G., (1999), Biotechnology and Bioengineering, 62, 2, 183-192.
- 8. Yamamoto K., Win K. M., (1991), Water Science and Technology, 23, 1639-1648.
- 9. Strohwald N. K. H., Ross W. R., (1992), Water Science and Technology, 25, 95-105.
- 10. Canales A., Pareilleux A., Rols J. L., Goma G., Huyard A., (1994), Water Science and Technology, 30, 8, 97-106.

- 11. Chiemchaisri C., Yamamoto K., Vigneswaran S., (1993), Water Science and Technology, 27, 171-178.
- 12. Wojnowska-Baryła I., Stolarczyk E., Babuchowski A., Debourg A., (1999), VI Ogólnopolskie Sympozjum Naukowo-Techniczne "Biotechnologia środowiskowa", Wrocław, 133-138.
- 13. Pankhania M., Stephenson T., Semmens M. J., (1994), 28, 10, 2233-2236.
- 14. Doris B., Baumann P., (1994), Water Science and Technology, 30, 6, 181-184.
- 15. Suzuki Y., Miyahara S., Takeishi K., (1993), Water Science and Technology, 28, 7, 243-250.