630.

ON AN EXPRESSION FOR $1 \pm \sin (2 p+1) u$ IN TERMS OF $\sin u$.
[From the Messenger of Mathematics, vol. v. (1876), pp. 7, 8.]

Write $\sin u=x$, then we have

$$
\begin{array}{rlrl}
\sin u=x, & \cos u & =\sqrt{ }\left(1-x^{2}\right), \\
\sin 3 u=3 x-4 x^{3}, & \cos 3 u & =\left(1-4 x^{2}\right) \sqrt{ }\left(1-x^{2}\right), \\
\sin 5 u & =5 x-20 x^{3}+16 x^{5}, & \cos 5 u & =\left(1-12 x^{2}+16 x^{4}\right) \sqrt{ }\left(1-x^{2}\right), \\
\& c . & \& c .
\end{array}
$$

It is hence clear, that in general

$$
\begin{aligned}
& 1-\sin (2 p+1) u=(1 \pm x)\left\{(1, \quad x)^{p}\right\}^{2} \\
& 1+\sin (2 p+1) u=(1 \mp x)\left\{(1,-x)^{p}\right\}^{2}
\end{aligned}
$$

where $(1, x)^{p}$ denotes a rational and integral function of x of the order p, and $(1,-x)^{p}$ the same function of $-x$; for it is only in this manner that we can have

$$
\cos ^{2}(2 p+1) u=\left(1-x^{2}\right)\left\{\left[1, x^{2}\right]^{p}\right\}^{2}
$$

We, in fact, find

$$
\begin{aligned}
& 1+\sin u=1+x \\
& 1-\sin 3 u=(1+x)(1-2 x)^{2} \\
& 1+\sin 5 u=(1+x)\left(1+2 x-4 x^{2}\right)^{2} \\
& 1-\sin 7 u=(1+x)\left(1-4 x-4 x^{2}+8 x^{3}\right)^{2}
\end{aligned}
$$

$$
\& c .
$$

and it thus appears that the form is

$$
1+(-)^{p} \sin (2 p+1) u=(1+x)\left\{(1, x)^{p}\right\}^{2}
$$

c. x .

To find herein the expression of the factor $(1, x)^{p}$, write $u=\frac{1}{2} \pi-\theta$ and consequently $x=\cos \theta$; we have therefore

$$
1+\cos (2 p+1) \theta=(1+\cos \theta)\left\{(1, x)^{p}\right\}^{2}
$$

where in the second factor on the right-hand side x is retained to stand for its value $\cos \theta$. This gives

$$
2 \cos ^{2}\left(p+\frac{1}{2}\right) \theta=2 \cos ^{2} \frac{1}{2} \theta\left\{(1, x)^{p}\right\}^{2}
$$

or, what is the same thing,

$$
(1, x)^{p}=\frac{\cos \left(p+\frac{1}{2}\right) \theta}{\cos \frac{1}{2} \theta}
$$

viz. this is

$$
=\cos p \theta-\sin p \theta \frac{\sin \frac{1}{2} \theta}{\cos \frac{1}{2} \theta}
$$

which is

$$
=\cos p \theta-\sin p \theta \frac{1-\cos \theta}{\sin \theta}
$$

We have

$$
\begin{aligned}
\cos p \theta+i \sin p \theta & =\left\{x+i \sqrt{ }\left(1-x^{2}\right)\right\}^{p} \\
& =X+i \sqrt{ }\left(1-x^{2}\right) Y, \text { suppose }
\end{aligned}
$$

where X, Y are rational and integral functions of x of the orders p and $p-1$ respectively; that is, and we have therefore

$$
\cos p \theta=X, \quad \sin p \theta=\sin \theta \cdot Y
$$

$$
(1, x)^{p}=X-Y(1-x)
$$

which is the required expression for $(1, x)^{p}$. For instance
that is,

$$
p=3, \quad X+i \sqrt{ }\left(1-x^{2}\right) Y=\left\{x+i \sqrt{ }\left(1-x^{2}\right)\right\}^{3} ;
$$

$$
\begin{aligned}
& X=-3 x \quad+4 x^{3} \\
& Y=-1+4 x^{2} \text {, and } \therefore \quad-(1-x) Y=1-x-4 x^{2}+4 x^{3} \\
& \overline{X-(1-x) Y=1-4 x-4 x^{2}+8 x^{3}},=(1, x)^{2} \text {, } \\
& 1-\sin 7 u=(1+x)\left(1-4 x-4 x^{2}+8 x^{3}\right)^{2},
\end{aligned}
$$

so that
and hence
which agrees with a result already obtained.
The foregoing value of $(1, x)^{p}$ may also be written

$$
(1, x)^{p}=\frac{1}{\sin \theta}\{\sin (p+1) \theta-\sin p \theta\}
$$

which however is not practically so convenient.
The formula corresponds to a like formula in elliptic functions, viz. writing $\operatorname{sinam} u=x$, the numerator of $1+(-)^{p} \operatorname{sinam}(2 p+1) u$ is

$$
=(1+x)\left\{(1, x)^{2 p(p+1)}\right\}^{2},
$$

which is $(1+x)$ multiplied by the square of a rational and integral function of x.

