637.

ON A DIFFERENTIAL EQUATION IN THE THEORY OF ELLIPTIC FUNCTIONS.

[From the Messenger of Mathematics, vol. vi. (1877), p. 29.]
In the differential equation

$$
Q^{2}-Q\left(k+\frac{1}{k}\right)-3=3\left(1-k^{2}\right) \frac{d Q}{d k}
$$

considered Messenger, t. IV., pp. 69 and 110, [594] and [597], writing $Q=x$ and $k+\frac{1}{k}=y$, the equation becomes

$$
d y=\frac{3\left(y^{2}-4\right) d x}{3+x y-x^{2}},
$$

and we have, as a particular solution,

$$
y=\frac{1}{4}\left(x^{3}-6 x-\frac{3}{x}\right)
$$

To verify this, observe that from the value of y

$$
d y=\frac{3}{4 x^{2}}\left(x^{2}-1\right)^{2} d x, \quad 3+x y-x^{2}=\frac{1}{4}\left(x^{2}-1\right)\left(x^{2}-9\right)
$$

and the equation becomes

$$
\frac{3}{4 x^{2}}\left(x^{2}-1\right)^{2}=\frac{\frac{3}{16 x^{2}}\left\{\left(x^{4}-6 x^{2}-3\right)^{2}-64 x^{2}\right\}}{\frac{1}{4}\left(x^{2}-1\right)\left(x^{2}-9\right)}
$$

viz. this is

$$
\left(x^{2}-1\right)^{3}\left(x^{2}-9\right)=\left(x^{4}-6 x^{2}-3\right)^{2}-64 x^{2},
$$

which is right.

