639.

AN ELEMENTARY CONSTRUCTION IN OPTICS.

[From the Messenger of Mathematics, vol. vi. (1877), pp. 81, 82.]
Consider two lines meeting at a point P, and a point A; through A, draw at right angles to $A P$, a line meeting the two lines in the points U, V respectively; and through the same point A draw any other line meeting the two lines in the

points U^{\prime}, V^{\prime} respectively; also let the points u^{\prime}, v^{\prime} be the feet of the perpendiculars let fall from U^{\prime}, V^{\prime} respectively on the line $U V$; then we have

$$
\frac{1}{A u^{\prime}}+\frac{1}{A v^{\prime}}=\frac{1}{A U}+\frac{1}{A V}
$$

The theorem can be proved at once without any difficulty. It answers to the optical construction, according to which, if $U P V$ represents the path of a ray through a convex lens $A P$, then the thin pencil, axis $U^{\prime} P$ and centre U^{\prime}, converges after refraction to the point V^{\prime}, where $U^{\prime} V^{\prime}$ are in lined with A the centre of the lens; considering as usual the inclinations to the axis as small, we have approximately $A V^{\prime}=A v^{\prime}, A U^{\prime}=A u^{\prime}$, and the theorem is

$$
\frac{1}{A U^{\prime}}+\frac{1}{A V^{\prime}}=\frac{1}{A U}+\frac{1}{A V}, \quad=\frac{1}{A F},
$$

if $A F^{\prime}$ is the focal length of the lens.
In the original theorem, the line $U V$ need not be at right angles to $A P$, but may be any line whatever; the projecting lines $U^{\prime} u^{\prime}$ and $V^{\prime} v^{\prime}$ must then be parallel to $A P$, and the theorem remains true.

