644.

NOTE ON MAGIC SQUARES.

[From the Messenger of Mathematics, vol. vi. (1877), p. 168.]

In a magic square of any odd order, formed according to the ordinary process, there is a tolerably simple analytical expression for the number which occupies any given compartment; thus taking the square of 21 , let the dexter diagonals (N.W. to S.E.) commencing from the N.E. corner compartment, be numbered 1, 2, 3,.., 20, 21, 20^{\prime}, $19^{\prime}, \ldots, 2^{\prime}, 1^{\prime}$, the diagonals of course containing these numbers of compartments respectively; and in any diagonal let the compartments reckoning from the top line be numbered $1,2,3, \ldots$, respectively; then if $D_{\theta, \phi}$ (or $D_{\theta, \phi}^{\prime}$ as the case may be) denotes the number in the compartment ϕ of the diagonal θ or θ^{\prime}, we have

$$
\begin{aligned}
& D_{2 \theta+1, \phi}=20 \theta+10+\phi \\
& D_{2 \theta, \phi}=20 \theta+231+\phi(-21), \\
& D_{2 \theta+1, \phi}^{\prime}=-22 \theta+430+\phi \\
& D_{2 \theta, \phi}^{\prime}=-22 \theta+231+\phi(-21),
\end{aligned}
$$

where in the second and fourth expressions the term -21 is to be retained only if $\phi>\theta$; if $\phi \gg$, it is to be omitted. There would be a like formulæ for a square of any odd order, and it would be easy to write down the formulæ for the general value $2 n+1$: but I have preferred to give them for a specific case.

