646.

ON THE GENERAL EQUATION OF DIFFERENCES OF THE SECOND ORDER.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xiv. (1877), pp. 23-25.]

Consider the equation of differences
viz. we have

$$
\begin{aligned}
& u_{x}=a_{x-1} u_{x-1}+b_{x-2} u_{x-2}, \\
& u_{2}=a_{1} u_{1}+b_{0} u_{0}, \\
& u_{3}=a_{2} u_{2}+b_{1} u_{1}, \\
& u_{4}=a_{3} u_{3}+b_{2} u_{2}, \\
& u_{5}=a_{4} u_{4}+b_{3} u_{3}, \\
& u_{6}=a_{5} u_{5}+b_{4} u_{4}, \\
& \quad \& c .,
\end{aligned}
$$

and thence

$$
\begin{aligned}
& u_{3}=\left|\begin{array}{l}
a_{2} a_{1} \\
+b_{1}
\end{array}\right| u_{1}+\quad a_{2} \quad b_{0} u_{0}, \\
& \begin{array}{rl|l|l}
u_{4}= & a_{3} a_{2} a_{1} & u_{1}+ & a_{3} a_{2} \\
& b_{0} u_{0}, \\
& +a_{3} b_{1} & & +b_{2}
\end{array} \\
& u_{5}=a_{4} a_{3} a_{2} a_{1} u_{1}+a_{4} a_{3} a_{2} b_{0} u_{0}, \\
& +a_{4} a_{3} b_{1} \quad+a_{4} b_{2} \\
& +a_{4} a_{1} b_{2} \quad+a_{2} b_{3} \\
& +a_{2} a_{1} b_{3} \\
& +b_{1} b_{3}
\end{aligned}
$$

$$
\begin{array}{rl|l|l}
u_{6}= & a_{5} a_{4} a_{3} a_{2} a_{1} & u_{1}+a_{5} a_{4} a_{3} a_{2} & b_{0} u_{0} \\
& +a_{5} a_{4} a_{3} b_{1} & +a_{5} a_{4} b_{2} & \\
& +a_{5} a_{4} a_{1} b_{2} & +a_{5} a_{2} b_{3} & \\
& +a_{5} a_{2} a_{1} b_{3} & +a_{3} a_{2} b_{4} & \\
& +a_{3} a_{2} a_{1} b_{4} & +b_{4} b_{2} & \\
& +a_{5} b_{3} b_{1} & \\
& +a_{3} b_{4} b_{1} & \\
& +a_{1} b_{4} b_{2} &
\end{array}
$$

\&c.
It is now easy to see the law; viz. writing for instance

$$
u_{6}=54321 \cdot u_{1}+5432 \cdot b_{0} u_{0},
$$

then 54321 has a leading term $a_{5} a_{4} a_{3} a_{2} a_{1}$: it has terms derived from this by changing any pair $a_{2} a_{1}$ into $b_{1}, a_{3} a_{2}$ into $b_{2}, a_{4} a_{3}$ into $b_{3}, a_{5} a_{4}$ into b_{4} : it has terms derived by changing any two pairs $a_{4} a_{3}, a_{2} a_{1}$ into $b_{3} b_{1} ; a_{5} a_{4}, a_{2} a_{1}$ into $b_{4} b_{1} ; a_{5} a_{4}, a_{3} a_{2}$ into $b_{4} b_{2}$, and so on; where observe that the expression a pair denotes the product of two consecutive a 's.

And, similarly, 5432 has a leading term $a_{5} a_{4} a_{3} a_{2}$; the other terms being derived from this in the same manner precisely.

The solution of $u_{x}=l x\left(a u_{x-1}-u_{x-2}\right)$ is included in, and might be deduced from the foregoing, but it is convenient to obtain it separately. Supposing for greater simplicity that $u_{-1}=0, u_{0}=1$ (or, what is the same thing, $u_{0}=1, u_{1}=l_{1} \alpha$), then we find

$$
\begin{aligned}
& u_{0}=1 \text {, } \\
& u_{1}=l_{1} a \text {, } \\
& u_{2}=l_{2} l_{1} a^{2}-l_{2}, \\
& u_{3}=l_{3} l_{2} l_{1} a^{3}-\left|\begin{array}{r}
l_{3} l_{2} \\
+l_{3} l_{1}
\end{array}\right| \alpha \\
& u_{4}=l_{4} l_{3} l_{2} l_{1} a^{4}-\left|\begin{array}{r}
l_{4} l_{3} l_{2} \\
+l_{4} l_{3} l_{1} \\
+l_{4} l_{2} l_{1}
\end{array}\right| a^{2}+l_{4} l_{2}, \\
& \left.u_{5}=l_{5} l_{4} l_{3} l_{2} l_{1} a^{5}-\left|\begin{array}{r}
l_{5} l_{4} l_{3} l_{2} \\
+l_{5} l_{4} l_{3} l_{1} \\
+l_{5} l_{4} l_{2} l_{1} \\
+l_{5} l_{3} l_{2} l_{1}
\end{array}\right| \begin{array}{|r|r}
& l_{5}^{3} l_{4} l_{2} \\
+l_{5} l_{3} l_{2} \\
+l_{5} l_{3} l_{1}
\end{array} \right\rvert\, a,
\end{aligned}
$$

\&c.,
viz. we may for example write

$$
u_{5}=l_{5} 4321 . a^{5}-4321(\cdot) a^{3}+4321(:) a ;
$$

where
4321 denotes $l_{4} l_{3} l_{2} l_{1}$:
in $4321(\cdot)$, we omit successively each number, viz. we thus obtain

$$
\begin{array}{r}
432+431+421+321 \\
=l_{4} l_{3} l_{2}+l_{4} l_{3} l_{1}+l_{4} l_{2} l_{1}+l_{3} l_{2} l_{1}:
\end{array}
$$

in 4321 (:), we omit successively each two non-consecutive numbers, viz. the omitted numbers being 1,$3 ; 1,4 ; 2$, 4, we obtain

$$
\begin{array}{r}
42+32+31, \\
=l_{4} l_{2}+l_{3} l_{2}+l_{3} l_{1}:
\end{array}
$$

and so on, the omissions being each three numbers, each four numbers, \&c., no two of them being consecutive ; thus in $654321(\therefore)$, the omissions are $5,3,1$, and $6,4,2$; or the symbol is

$$
\begin{array}{r}
642+531, \\
=l_{6} l_{4} l_{2}+l_{5} l_{3} l_{1} .
\end{array}
$$

As an application, a solution of the differential equation $\frac{d}{d x}\left(x \frac{d y}{d x}\right)+(x-a) y=0$ is $y=u_{0}+u_{1} x+u_{2} x^{2}+\& c$., where $n^{2} u_{n}=a u_{n-1}-u_{n-2}$, and in particular $1^{2} u_{1}=a u_{0}$; the equation of differences is thus of the form in question, and retaining l_{n} in place of its value, $=n^{2}$, the solution is $u_{0}=1, u_{1}=l_{1} a, u_{2}=l_{2} l_{1} a^{2}-l_{2}$, \&c. ut suprà. The differential equation was considered by the Rev. H. J. Sharpe, who mentioned it to Prof. Stokes.
c. x .

