648.

ALGEBRAICAL THEOREM.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xiv. (1877), p. 53.]

I wish to put on record the following theorem, given by me as a Senate-House Problem, January, 1851.

If $\{\alpha+\beta+\gamma+\ldots\}^{p}$ denote the expansion of $(\alpha+\beta+\gamma+\ldots)^{p}$, retaining those terms $N \alpha^{a} \beta^{b} \gamma^{c} \ldots$ only in which

$$
b+c+d+\ldots \ngtr p-1, \quad c+d+\ldots \ngtr p-2, \& c ., \& c c .,
$$

then

$$
\begin{aligned}
x^{n}=(x+\alpha)^{n}-n\{\alpha\}^{1}(x+\alpha & +\beta)^{n-1}+\frac{1}{2} n(n-1)\{\alpha+\beta\}^{2}(x+\alpha+\beta+\gamma)^{n-2} \\
& \quad-\frac{1}{6} n(n-1)(n-2)\{\alpha+\beta+\gamma\}^{3}(x+\alpha+\beta+\gamma+\delta)^{n-3}+\& c .
\end{aligned}
$$

The theorem, in a somewhat different and imperfectly stated form, is given, Burg, Crelle, t. I. (1826), p. 368, as a generalisation of Abel's theorem,

$$
\begin{aligned}
(x+\alpha)^{n}=x^{n}+n \alpha(x+\beta)^{n-1} & +\frac{1}{2} n(n-1) \alpha(\alpha-2 \beta)(x+2 \beta)^{n-2} \\
& +\frac{1}{6}(n-1)(n-2)(n-3) \alpha(\alpha-3 \beta)^{2}(x+3 \beta)^{2}+\& c .
\end{aligned}
$$

c. x .

