649.

ADDITION TO MR GLAISHER'S NOTE ON SYLVESTER'S PAPER, "DEVELOPMENT OF AN IDEA OF EISENSTEIN."

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xiv. (1877), pp. 83, 84.]

The formula (11) [in the Note], under a slightly different form, is demonstrated by me in an addition [263] to Sir J. F. W. Herschel's paper "On the formulæ investigated by Dr Brinkley, \&c.," Phil. Trans. t. Cl., 1860, pp. 321-323. The demonstration is in effect as follows: let u denote a series of the form $1+b x+c x^{2}+d x^{3}+\ldots$, and let u^{i} (where i is positive or negative, integer or fractional; denote the development of the i-th power of u, continued up to the term which involves x^{n}, the terms involving higher powers of x being rejected; $u^{0}, u^{1}, u^{2}, \ldots$, and generally u^{β} will denote in like manner the developments of these powers up to the terms involving x^{n}, or, what is the same thing, they will be the values of u^{i} corresponding to $i=0,1,2, \ldots, s$. By the formula $u^{i}=1+\frac{i}{1}(u-1)+\frac{i \cdot i-1}{1.2}(u-1)^{2}+\ldots$ as far as the term involving $(u-1)^{n}, u^{i}$ is a rational and integral function of i of the degree n, and can therefore be expressed in terms of the values $u^{0}, u^{1}, u^{2}, \ldots, u^{n}$ which correspond to $i=0,1,2, \ldots, n$. Let s have any one of the last-mentioned values, then the expression

$$
\frac{i . i-1 . i-2 \ldots i-n}{i-s} \frac{1}{s . s-1 \ldots 2.1 .-1 .-2 \ldots-(n-s)},
$$

which as regards i is a rational and integral function of the degree n (the factor $i-s$ which occurs in the numerator and denominator being of course omitted), vanishes for each of the values $i=0,1,2, \ldots, n$, except only for the value $i=s$, in which case it becomes equal to unity. The required formula is thus seen to be

$$
u^{i}=\Sigma\left\{\frac{i . i-1 . i-2 \ldots i-n}{i-s} \frac{1}{s . s-1 \ldots 2.1 .-1 .-2 \ldots-(n-s)} u^{s}\right\},
$$

where the summation extends to the several values $s=0,1,2, \ldots, n$; or, what is the same thing, it is

$$
u^{i}=\Sigma\left\{\frac{i . i-1 . i-2 \ldots i-n}{i-s} \frac{(-)^{n-s} 1}{1.2 \ldots s .1 .2 \ldots(n-s)} u^{s}\right\}
$$

or, changing the sign of i, it is

$$
u^{-i}=\Sigma\left\{\frac{i . i+1 . i+2 \ldots i+n}{i+s} \frac{(-)^{s} 1}{1.2 \ldots s .1 .2 \ldots n-s} u^{s}\right\}
$$

where, as before, s has the values $0,1,2, \ldots, n$ successively. Or, what is the same thing, we have

$$
C_{-i, n}=\Sigma\left\{\frac{i . i+1 . i+2 \ldots i+n}{i+s} \frac{(-)^{s} 1}{1.2 \ldots s .1 .2 \ldots n-s} C_{s, n}\right\}
$$

where the term corresponding to $s=0$, as containing the factor $C_{0, n}$ vanishes except in the case $n=0$ (for which it is $=1$); and omitting this evanescent term, this is in fact the formula (11).

