650.

ON A QUARTIC SURFACE WITH TWELVE NODES.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. XIV. (1877), pp. 103-106.]

WRITE for shortness

$$a = \beta - \gamma, \quad f = \alpha - \delta, \quad af = p,$$

$$b = \gamma - \alpha, \quad g = \beta - \delta, \quad bg = q,$$

$$c = \alpha - \beta, \quad h = \gamma - \delta, \quad ch = r;$$

then, θ being a variable parameter, the surface in question is the envelope of the quadric surface

$$(\alpha + \theta)^2 agh X^2 + (\beta + \theta)^2 bhf Y^2 + (\gamma + \theta)^2 cfg Z^2 + (\delta + \theta)^2 abc W^2 = 0;$$

viz. this is

$$\Sigma a^2 a g h X^2$$
. $\Sigma a g h X^2 - \Sigma a a g h X^2 = 0$.

There are no terms in X^4 , &c.; the coefficient of Y^2Z^2 is

$$\gamma^2 cfg \cdot bfh + \beta^2 bfh \cdot cfg - 2\beta bfh \cdot \gamma cfg$$

which is

$$= bcf^2gh (\beta - \gamma)^2, = a^2bcf^2gh, = abcfgh \cdot p.$$

Hence the whole equation divides by abcfgh, and throwing out this factor, the result is

$$p(Y^{2}Z^{2} + X^{2}W^{2}) + q(Z^{2}X^{2} + Y^{2}W^{2}) + r(X^{2}Y^{2} + Z^{2}W^{2}) = 0,$$

or, observing that p + q + r = 0, this may also be written

$$p (YZ + XW)^{2} + q (ZX + YW)^{2} + r (XY + ZW)^{2} = 0,$$

www.rcin.org.pl

ON A QUARTIC SURFACE WITH TWELVE NODES.

and also

650]

$$p(YZ - XW)^{2} + q(ZX - YW)^{2} + r(XY - ZW)^{2} = 0.$$

The more general equation

 $(p, q, r, l, m, n)(YZ + XW, ZX + YW, XY + ZW)^2 = 0$ represents a quartic surface (octadic) having the 8 nodes

(1,	0,	0,	0),	(1, 1,	1, 1),
(0,	1,	0,	0),	(1, 1,	1, 1),
(0,	0,	1,	0),	(1, 1,	ī, 1),
(0,	0,	0,	1),	(1, 1,	1, 1).

We have

	$d_X U =$	$d_Y U =$
<i>p</i> .	$XW^2 + YZW$	$p. YZ^2 + XZW$
q.	$YW^2 + YZW$	$q. YW^2 + XZW$
r.	$ZW^2 + YZW$	$r. YX^2 + XZW$
l.	$2XYZ + W(Y^2 + Z^2)$	<i>l.</i> $2XYW + Z(W^2 + X^2)$
m.	$2XYW + Z(W^2 + Y^2)$	m. $2YZX + W(Z^2 + X^2)$
n.	$2XZW + Y(W^2 + Z^2),$	n. $2YZW + X(W^2 + Z^2)$,
	$d_{\mathbf{z}}U =$	d = U =
р.	$d_Z U =$ $Y^2 Z + X Y W$	$d_W U = p. X^2 W + X Y Z$
1.0		
<i>q</i> .	$Y^2Z + XYW$	$p. X^2W + XYZ$
q. r.	$ \begin{array}{l} Y^2Z + XYW \\ X^2Z + XYW \end{array} $	$p. X^2W + XYZ$ $q. Y^2W + XYZ$
q. r. l.	$Y^{2}Z + XYW$ $X^{2}Z + XYW$ $W^{2}Z + XYW$	$p. X^2W + XYZ$ $q. Y^2W + XYZ$ $r. Z^2W + XYZ$

Hence there will be a node

1, $\overline{1}$, $\overline{1}$, 1, if p + q + r + 2l - 2m - 2n = 0, $\overline{1}$, 1, $\overline{1}$, 1, ... p + q + r - 2l + 2m - 2n = 0, $\overline{1}$, $\overline{1}$, 1, 1, ... p + q + r - 2l - 2m + 2n = 0, 1, 1, 1, 1, ... p + q + r + 2l + 2m + 2n = 0;

or say there will be

1 of these nodes if p + q + r + 2l + 2m + 2n = 0, 2 p + q + r + 2l = 0, m + n = 0, 3 p + q + r = 2l = -2m = -2n, 4 p + q + r = 0, l = 0, m = 0, n = 0;

1

ON A QUARTIC SURFACE WITH TWELVE NODES.

viz. the surface having the 12 nodes is the original surface

$$p(YZ + XW)^{2} + q(ZX + YW)^{2} + r(XY + ZW)^{2},$$

where

$$p+q+r=0.$$

The Jacobian of the quadrics

$$YZ + XW = 0, \ ZX + YW = 0, \ XY + ZW = 0$$

is

W,	Z,	Υ,	X	=0;
Z,	W,	Х,	Y	0.0
W, Z, Y,	Х,	W,	Z	1. 1

viz. the equations are

$$\begin{split} X^3 &- X \ (Y^2 + Z^2 + W^2) + 2YZW &= 0, \\ Y^3 &- Y \ (Z^2 + X^2 + W^2) + 2ZXW &= 0, \\ Z^3 &- Z \ (X^2 + Y^2 + W^2) + 2XYW &= 0, \\ W^3 &- W \ (X^2 + Y^2 + Z^2) + 2XYW &= 0, \end{split}$$

each of which is satisfied in virtue of any one of the pairs of equations

$$\begin{array}{c|c} (Y-Z=0, \ X-W=0) \\ (Z-X=0, \ Y-W=0) \\ (X-Y=0, \ Z-W=0) \end{array} \left| \begin{array}{c} (Y+Z=0, \ X+W=0), \\ (Z+X=0, \ Y+W=0), \\ (X+Y=0, \ Z+W=0), \end{array} \right|$$

so that the Jacobian curve is, in fact, the six liner represented by these equations.

Any two of the three tetrads form an octad, the 8 points of intersection of three quadric surfaces; a figure representing the relation of the 12 points to each other may be constructed without difficulty.

Each tetrad is a sibi-conjugate tetrad quoad the quadric $X^2 + Y^2 + Z^2 + W^2 = 0$. The three tetrads are not on the same quadric surface.

[650

62