656.

ON THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS.

[From the Mathematische Annalen, t. xI. (1877), pp. 194-198.]

In what follows, any letter not otherwise explained denotes a function of certain variables (x, y, p, q), or (x, y, z, p, q, r), \&c., as will be stated in each particular case.

An equation $a=$ const. denotes that the function a of the variables is, in fact, a constant (viz. by such equation we establish a relation between the variables): and when this is so, we use the same letter a to denote the constant value of the function in question; I find this a very convenient notation.

Thus if the variables are x, y, z, p, q, r and if p, q, r are the differential coefficients in regard to x, y, z respectively of a function V of x, y, z, then H (as a letter not otherwise explained) denotes a function of x, y, z, p, q, r and considering it as a given function,

$$
\mathrm{H}=\text { const. }
$$

will be a partial differential equation containing the constant H. For instance, if H denote the function $p q r-x y z, \mathrm{H}=$ const. is the partial differential equation, $p q r-x y z=\mathrm{H}$ (a given constant).

The integration of the partial differential equation, $\mathrm{H}=$ const., depends upon that of the linear partial differential equation

$$
(\mathrm{H}, \Theta)=0
$$

where as usual (H, Θ) signifies

$$
\frac{\partial(\mathrm{H}, \Theta)}{\partial(p, x)}+\frac{\partial(\mathrm{H}, \Theta)}{\partial(q, y)}+\frac{\partial(\mathrm{H}, \Theta)}{\partial(r, z)}
$$

It can be effected if we know two conjugate solutions a, b of the equation $(H, \Theta)=0$, viz. a, b as solutions are such that $(\mathrm{H}, a)=0,(\mathrm{H}, b)=0$, and (as conjugate solutions) are also such that $(a, b)=0$; in this case if from the equations

$$
\mathrm{H}=\text { const. }, \quad a=\text { const. }, \quad b=\text { const. }
$$

we determine p, q, r as functions of x, y, z, the resulting value of $p d x+q d y+r d z$ is an exact differential, and we have

$$
V=\lambda+\int(p d x+q d y+r d z)
$$

a solution containing three arbitrary constants, λ, a, b, and therefore a complete solution of the proposed partial differential equation $\mathrm{H}=$ const.

But (as is known) there is a different process of integration, for which the conjugate solutions are not required, and which has reference to a system of initial values $x_{0}, y_{0}, z_{0}, p_{0}, q_{0}, r_{0}$: viz. if the independent solutions of $(\mathrm{H}, \Theta)=0$, are a, b, c, d, e, and if $a_{0}, b_{0}, c_{0}, d_{0}, e_{0}$ denote respectively the same functions of the initial variables that a, b, c, d, e are of x, y, z, p, q, r, then if from the equations

$$
a=a_{0}, \quad b=b_{0}, \quad c=c_{0}, \quad d=d_{0}, \quad e=e_{0}, \quad \mathrm{H}=\text { const. }
$$

we express p, q, r as functions of x, y, z and of $x_{0}, y_{0}, z_{0}, \mathrm{H}$, these last being regarded as constants, we have $p d x+q d y+r d z$ an exact differential, and

$$
V=\lambda+\int(p d x+q d y+r d z)
$$

a solution containing the constants $\lambda, x_{0}, y_{0}, z_{0}$ (that is, one supernumerary constant), and as such a complete solution.

It is interesting to prove directly that $p d x+q d y+r d z$ is an exact differential.
I consider first the more simple case where the variables are p, q, x, y. Here p, q are to be found from the equations

$$
a=a_{0}, \quad b=b_{0}, \quad c=c_{0}, \quad \mathrm{H}=\text { const } .
$$

and it is to be shown that $p d x+q d y$ is an exact differential.
Considering p, q, p_{0}, q_{0} as functions of the independent variables x, y, then differentiating in regard to x, and eliminating $\frac{d p}{d x}, \frac{d p_{0}}{d x}, \frac{d q_{0}}{d x}$, we have

$$
\left|\begin{array}{llll}
\frac{d a}{d x}+\frac{d a}{d q} \frac{d q}{d x}, & \frac{d a}{d p}, & \frac{d a_{0}}{d p_{0}}, & \frac{d a_{0}}{d q_{0}} \\
\frac{d b}{d x}+\frac{d b}{d q} \frac{d q}{d x}, & \frac{d b}{d p}, & \frac{d b_{0}}{d p_{0}}, & \frac{d b_{0}}{d q_{0}} \\
\frac{d c}{d x}+\frac{d c}{d q} \frac{d q}{d x}, & \frac{d c}{d p}, & \frac{d c_{0}}{d p_{0}}, & \frac{d c_{0}}{d q_{0}} \\
\frac{d \mathrm{H}}{d x}+\frac{d \mathrm{H}}{d q} \frac{d q}{d x}, & \frac{d \mathrm{H}}{d p}, & 0, & 0
\end{array}\right|=0
$$

or introducing a well-known notation for functional determinants, and expanding the determinant, this is

$$
\frac{\partial\left(a_{0}, b_{0}\right)}{\partial\left(p_{0}, q_{0}\right)}\left\{\frac{\partial(\mathrm{H}, c)}{\partial(p, x)}+\frac{\partial(\mathrm{H}, c)}{\partial(p, q)} \frac{d q}{d x}\right\}+\& \mathrm{c} .=0
$$

But in the same way

$$
\frac{\partial\left(a_{0}, b_{0}\right)}{\partial\left(p_{0}, q_{0}\right)}\left\{\frac{\partial(\mathrm{H}, c)}{\partial(q, y)}+\frac{\partial(\mathrm{H}, c)}{\partial(q, p)} \frac{d p}{d y}\right\}+\& \mathrm{c} .=0
$$

or adding these, attending to the value of (H, c), and observing that $\frac{\partial(\mathrm{H}, c)}{\partial(q, p)}=-\frac{\partial(\mathrm{H}, c)}{\partial(p, q)}$ we have

$$
\frac{\partial\left(a_{0}, b_{0}\right)}{\partial\left(p_{0}, q_{0}\right)}\left\{(\mathrm{H}, c)+\frac{\partial(\mathrm{H}, c)}{\partial(p, q)}\left(\frac{d q}{d x}-\frac{d p}{d y}\right)\right\}+\& c .=0
$$

the terms denoted by the \&c. being the like terms with b, c, a and c, a, b in place of a, b, c. We have $(\mathrm{H}, a)=0,(\mathrm{H}, b)=0,(\mathrm{H}, c)=0$, and the equation in fact is

$$
\left\{\Sigma \frac{\partial\left(a_{0}, b_{0}\right)}{\partial(p, q)} \frac{\partial(\mathrm{H}, c)}{\partial(p, q)}\right\}\left(\frac{d q}{d x}-\frac{d p}{d y}\right)=0
$$

viz. we have $\frac{d q}{d x}-\frac{d p}{d y}=0$, the condition for the exact differential.
Coming now to the case where the variables are x, y, z, p, q, r, and in the six equations treating $p, q, r, p_{0}, q_{0}, r_{0}$ as functions of the independent variables x, y, z, 一 then differentiating with regard to x and proceeding as before, we find for $\frac{d r}{d x}$ the equation

$$
\frac{\partial\left(c_{0}, d_{0}, e_{0}\right)}{\partial\left(p_{0}, q_{0}, r_{0}\right)}\left\{\frac{d r}{d x} \frac{\partial(a, b, \mathrm{H})}{\partial(r, p, q)}+\frac{\partial(a, l, \mathrm{H})}{\partial(x, p, q)}\right\}+\& c .=0 .
$$

We have, in the same way, for $\frac{d p}{d z}$ the equation

$$
\frac{\partial\left(c_{0}, d_{0}, e_{0}\right)}{\partial\left(p_{0}, q_{0}, r_{0}\right)}\left\{\frac{d p}{d z} \frac{\partial(a, b, \mathrm{H})}{\partial(p, r, q)}+\frac{\partial(a, b, \mathrm{H})}{\partial(z, r, q)}\right\}+\& c^{=}=0
$$

or, adding the two equations,

$$
\frac{\partial\left(c_{0}, d_{0}, e_{0}\right)}{\partial\left(p_{0}, q_{0}, r_{0}\right)}\left\{\left(\frac{d r}{d x}-\frac{d p}{d z}\right) \frac{\partial(a, b, \mathrm{H})}{\partial(r, p, q)}+\frac{\partial(a, b, \mathrm{H})}{\partial(x, p, q)}+\frac{\partial(a, b, \mathrm{H})}{\partial(z, r, q)}\right\}+\& c .=0
$$

where the terms denoted by the \&c. indicate the like terms corresponding to the different partitions of the letters a, b, c, d, e.

The equation may be simplified; we have identically

$$
-\frac{d a}{d q}(b, \mathrm{H})-\frac{d b}{d q}(\mathrm{H}, a)-\frac{d \mathrm{H}}{d q}(a, b)=\frac{\partial(a, b, \mathrm{H})}{\partial(x, p, q)}+\frac{\partial(a, b, \mathrm{H})}{\partial(z, r, q)}
$$

or since $(H, a)=0,(b, H)=0$, the left-hand side is simply $-\frac{d \mathrm{H}}{d q}(a, b)$, and the equation becomes

$$
\frac{\partial\left(c_{0}, d_{0}, e_{0}\right)}{\partial\left(p_{0}, q_{0}, r_{0}\right)}\left\{\left(\frac{d r}{d x}-\frac{d p}{d z}\right) \frac{\partial(a, b, \mathrm{H})}{\partial(r, p, q)}-\frac{d \mathrm{H}}{d q}(a, b)\right\}+\& \mathrm{c} .=0
$$

This ought to give $\frac{d r}{d x}-\frac{d p}{d z}=0$, and it will do so if only

$$
\Sigma\left\{\frac{\partial\left(c_{0}, d_{0}, e_{0}\right)}{\partial\left(p_{0}, q_{0}, r_{0}\right)}(a, b)\right\}=0
$$

this is then the equation which has to be proved. By the Poisson-Jacobi theorem, (a, b) is a function of a, b, c, d, e : if we write

$$
\left(a_{0}, b_{0}\right)=\frac{\partial\left(a_{0}, b_{0}\right)}{\partial\left(p_{0}, x_{0}\right)}+\frac{\partial\left(a_{0}, b_{0}\right)}{\partial\left(q_{0}, y_{0}\right)}+\frac{\partial\left(a_{0}, b_{0}\right)}{\partial\left(r_{0}, z_{0}\right)}
$$

then $\left(a_{0}, b_{0}\right)$ is the same function of $a_{0}, b_{0}, c_{0}, d_{0}, e_{0}$; but these are $=a, b, c, d, e$ respectively, and we thence have $(a, b)=\left(a_{0}, b_{0}\right)$, and the theorem to be proved is

$$
\Sigma\left\{\frac{\partial\left(c_{0}, d_{0}, e_{0}\right)}{\partial\left(p_{0}, q_{0}, r_{0}\right)}\left(a_{0}, b_{0}\right)\right\}=0
$$

But substituting for $\left(a_{0}, b_{0}\right)$ its value, the function on the left-hand is (it is easy to see) the sum of the three functional determinants

$$
\frac{\partial\left(a_{0}, b_{0}, c_{0}, d_{0}, e_{0}\right)}{\partial\left(p_{0}, q_{0}, r_{0}, p_{0}, x_{0}\right)}+\frac{\partial\left(a_{0}, b_{0}, c_{0}, d_{0}, e_{0}\right)}{\partial\left(p_{0}, q_{0}, r_{0}, q_{0}, y_{0}\right)}+\frac{\partial\left(a_{0}, b_{0}, c_{0}, d_{0}, e_{0}\right)}{\partial\left(p_{0}, q_{0}, r_{0}, r_{0}, z_{0}\right)},
$$

each of which vanishes as containing the same letter twice in the denominator, that is, as having two identical columns; and the theorem in question is thus proved. And in the same way $\frac{d p}{d y}-\frac{d q}{d x}, \frac{d q}{d z}-\frac{d r}{d y}$ are each $=0:$ or we have $p d x+q d y+r d z$ an exact differential.

The proof would fail if the factors multiplying $\frac{d q}{d x}-\frac{d p}{d y}$, \&c., or if any one of these factors, were $=0$; I have not particularly examined this, but the meaning would be, that here the equations in question $a=a_{0}$, \&c., $\mathrm{H}=$ const., are such as not to give rise to expressions for p, q, r as functions of $x, y, z, x_{0}, y_{0}, z_{0}, \mathrm{H}$, as assumed in the theorem; whenever such expressions are obtainable, then we have $p d x+q d y+r d z$ an exact differential.

The proof in the case of a greater number of variables, say in the next case where the variables are x, y, z, w, p, q, r, s, would present more difficulty-but I have not proceeded further in the question.

It is worth while to put the two processes into connexion with each other: taking in each case the variables to be x, y, z, p, q, r, and the partial differential equation to be $\mathrm{H}=$ const. ;
C. x .

In the one case, a, b being conjugate solutions of $(H, \Theta)=0$, from the equations $\mathrm{H}=$ const., $a=$ const., $b=$ const., we find p, q, r functions of $x, y, z, \mathrm{H}, a, b$:
and then $p d x+q d y+r d z$ is an exact differential.
In the other case, a, b, c, d, e being the solutions of $(H, \Theta)=0$, from the equations $\mathrm{H}=$ const., $a=a_{0}, b=b_{0}, c=c_{0}, d=d_{0}, e=e_{0}$, we find p, q, r functions of $x_{0}, y_{0}, z_{0}, \mathrm{H}$: and then $p d x+q d y+r d z$ is an exact differential.

It may be added that, if from the last mentioned equations we determine also p_{0}, q_{0}, r_{0} as functions of $x, y, z, x_{0}, y_{0}, z_{0}$, then considering only H as a constant, we ought to have $p d x+q d y+r d z-p_{0} d x_{0}-q_{0} d y_{0}-r_{0} d z_{0}$ an exact differential ; I have not examined the direct proof.

Cambridge, 28 Nov., 1876.

