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659.

A THEOREM ON GROUPS.

[From the Mathematische Annalen, t. XIII. (1878), pp. 561—565.]

The following theorem is very simple; but it seems to belong to a class of 
theorems, the investigation of which is desirable.

I consider a substitution-group of a given order upon a given number of letters; 
and I seek to double the group, that is to derive from it a group of twice the order 
upon twice the number of letters. This can be effected for any group, in a manner 
which is self-evident and in nowise interesting: but in a different manner for a 
commutative group (or group such that any two of its substitutions satisfy the condition 
AB =BA): it is to be observed that the double group is not in general commutative.

Let the letters of the original group be abode ..., we may for shortness write 
U= abcde...; and take U as the primitive arrangement: and let the group then be 
1, A, B,... where A, B,... represent substitutions: the corresponding arrangements are 
U, AU, BU,... and these may for shortness be represented by 1, A, B,...; viz. 
1, A, B, ... represent, properly and in the first instance, substitutions; but when it is 
explained that they represent arrangements, then they represent the arrangements 
U, AU, BU,....

For the double group the letters are taken to be a1b1c1d1e1... and a2b2c2d2e2..., 
= U1 and U2 suppose, and U1U2 is regarded as the primitive arrangement; A1 and A2 
denote the same substitutions in regard to U1 and U2 respectively, that A denotes in 
regard to U: and so for B1, B2, etc.; moreover 12 denotes the substitution (a1a2) 
(b1b2) (c1c2) (d1d2) (e1e2) ..., or interchange of the suffixes 1 and 2. The substitutions 
A1, A2, or any powers of these A1a, A2β, are obviously commutative; applying them to 
the primitive arrangement U1U2, we have A1αA2βU1U2 and A2βA1aU1U2 each = A1αU1A2βU2. 
But A1α, A2β are not commutative with 12: we have for instance 12A1a . U1U2 
= 12A1αU1. U2 = A1αU2. U1, but A1α12U1U2=A1α . U2U1= U2. A1αU1. If instead of the 
substitutions we consider the arrangements obtained by operating upon U1U2, then we
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may for shortness consider for instance A1A2 as denoting the arrangement A1U1. A2U2. 
But observe that in this use of the symbols the A1, A2 are not commutative, A2A1 
would denote the different arrangement A2U2. A1U1: in this use of the symbols, 1 
would denote U1U2, and 12 would denote U2U1, but it would be clearer to use 12, 21 
as denoting U1U2 and U2U1 respectively.

These explanations having been given, I remark that in every case the substitution- 
group 1, A, B,... gives the double group

as is at once seen to be true: but further when the original group 1, A, B, ... is 
commutative, then if m be any integer number, such that m2≡l (mod. the order of 
the original group), we have also the double group 

where of course if the order of the original group (=μ suppose) be prime, we have 
m ≡ 1 or else m≡-1 (mod. μ), say m = 1 or μ — 1; but if the order μ be composite, 
then the number of solutions may be greater.

The condition in order to the existence of the double group of course is that, 
in the system of substitutions just written down, the combination of any two sub­
stitutions may give a substitution of the system. And this is in fact the case in virtue 
of the formulae 

inasmuch as 1, A, B,... being a group, AB and AmB are each of them a substitution 
of the group, =C suppose; we have of course in like manner A1B1 = C1, A2B2 = C2, 
etc., and the right-hand sides of the four formulae are thus of the forms C1C2m, 
12C1C2m, 12C1C2m, C1C2m respectively, viz. these are substitutions of the system.

To prove for instance the formula 20, considering the arrangements obtained by 
operating upon U1U2, we have 

where of course the expressions on the right-hand side denote arrangements. By 
reason that the original group is commutative (AmB)m is = Am2Bm or since m2≡ 1 (mod. μ) 
this is =ABm; hence also (A2mB2)m = A2B2m: hence, considering as before the arrange­
ments obtained by operating on U1U2, we have
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and 

where of course the right-hand sides denote arrangements. Hence in the formula 20, 
the two substitutions operating on U1U2 give each of them the same arrangement 
A2mB2 A1B1m, that is, the two substitutions are equal. And similarly the other formulae 
l0, 30, 40 may be proved.

By interchanging A and B, in the formulae I obtain 

which is 

which is not 

which is not 

which is not

That is, in the double group any two substitutions of the form A1A2m are commutative, 
but a substitution of this form is not in general commutative with a substitution of 
the form 12B1B2m, nor are two substitutions of the last-mentioned form 12A1A2w, in 
general commutative with each other; hence the double group is not in general 
commutative.

In the formula 40, writing B = A, we have 

hence, if λ is the least integer value such that 

we have (12A1A2m)2λ = 1, viz. in the double group the substitutions of the second row 
are each of them of an order not exceeding 2λ, the substitution 12 being of course 
of the order 2. In particular, if m = μ-1, then λ=1: and the substitutions of the 
second row are each of them of the order 2.
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As the most simple instance of the theorem, suppose that the original group is 
the group 1, (αbc), (acb), or say 1, Θ, Θ2, of the cyclical substitutions upon the 3 letters 
abc. Here m2 ≡ 1 (mod. 3) or except m = 1 the only solution is m = 2, and thence 
λ = l. The double group is a group of the order 6 on the letters a1b1c1a2b2c2∙. viz. 
writing Θ = (αbc), and therefore Θ1=(α1b1c1), Θ12 = (a1c1b1), Θ2 = (a2b2c2),  Θ2= (a2c2b2), also
writing 12 = a, the substitutions are

1, Θ1Θ22, Θ12Θ2,
α, aΘ1Θ22, aΘ12Θ2,

the arrangements corresponding to the second row of substitutions are a2b2c2a1b1c1, 
b2c2a2c1a1b1, c2a2b2b1c1a1, viz. the substitutions are (a1a2) (b1b2) (c1c2), (α1b2)(b1c2)(c1α2),
(α1c2)(b1a2)(c1b2), each of them of the second order as they should be.

I take the opportunity of mentioning a further theorem. Let μ be the order of 
the group, and a the order of any term A thereof, a being of course a submultiple 

of μ: and let the term A be called quasi-positive when μ is even, quasi­

negative when μ is odd. The theorem is that the product of two quasi-

positive terms, or of two quasi-negative terms, is quasi-positive; but the product of a 
quasi-positive term and a quasi-negative term is quasi-negative. And it follows hence 
that, either the terms of a group are all quasi-positive, or else one half of them are 
quasi-positive and the other half of them are quasi-negative.

The proof is very simple: a term A of the group operating on the μ terms 
(1, A, B, C,...) of the group, gives these same terms in a different order, or it may 
be regarded as a substitution upon the μ symbols 1, A, B, C, ...; so regarded it is 
a regular substitution (this is a fundamental theorem, which I do not stop to prove), 

and hence since it must be of the order a it is a substitution composed of - cycles,CL 
each of a letters. But in general a substitution is positive or negative according as 
it is equivalent to an even or an odd number of inversions; a cyclical substitution 
upon a letters is positive or negative according as a — 1 is even or odd; and the 

substitution composed of the - cycles is positive or negative according as μ/a (α-1),

that is, μ , is even or odd. Hence by the foregoing definition, the term A,

according as it is quasi-positive or quasi-negative, corresponds to a positive substitution 
or to a negative substitution; and such terms combine together in like manner with 
positive and negative substitutions.

Cambridge, ⅛rd April, 1878.
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