661.

ON THE DOUBLE 9-FUNCTIONS.

[From the Proceedings of the London Mathematical Society, vol. IX. (1878), pp. 29, 30.]

PROF. CAYLEY gave an account of researches* on which he is engaged upon the double \Im -functions. In regard to these, he establishes in a strictly analogous manner the theory of the single \Im -functions, the process for the single functions being in fact as follows:—Considering u, x as connected by the differential relation

$$\delta u = \frac{\delta x}{\sqrt{a - x \cdot b - x \cdot c - x \cdot d - x}},$$

then, if A, B, C, D, Ω denote functions of u, viz. for shortness, the single letters are used, instead of writing them as functional symbols, A(u), B(u), &c., then, by way of definition of these functions (called, the first four of them ϑ -functions, and the last an ω -function), we assume

A, B, C,
$$D = \Omega \sqrt{a-x}, \ \Omega \sqrt{b-x}, \ \Omega \sqrt{c-x}, \ \Omega \sqrt{d-x}$$

respectively, together with one other equation, as presently mentioned. Without in any wise defining the meaning of Ω , we then obtain a set of equations of the form

$$A\delta B - B\delta A = \Omega^2 \sqrt{c - x} \cdot d - x \, \delta u,$$

(mere constant coefficients are omitted), or, what is the same thing,

$A\delta B - B\delta A = CD\,\delta u,$

which are differential equations defining the nature of the ratio-functions A : B : C : D. If, proceeding to second differential coefficients, we attempt to form the expressions for $A\delta^2 A - (\delta A)^2$, &c., these involve multiples of $\Omega\delta^2\Omega - (\delta\Omega)^2$; in order to obtain a con-

[* See paper, number 665.]

20 - 2

www.rcin.org.pl

venient form, we assume $\Omega \delta^2 \Omega - (\delta \Omega)^2 = \Omega^2 M (\delta u)^2$, where M is a function of x. We thus obtain an equation $A \delta^2 A - (\delta A)^2 = \Omega^2 \mathfrak{A} (\delta u)^2$, where the value of \mathfrak{A} depends upon that of M. The value of M has to be taken so as to simplify as much as may be the expression of \mathfrak{A} , but so that M shall be a symmetrical function of the constants a, b, c, d: this last condition is assigned in order that the like simplification may present itself in the analogous relations $B\delta^2 B - (\delta B)^2 = \Omega^2 \mathfrak{B} (\delta u)^2$, &c. The proper expression of M is found to be

$$M = -2x^{2} + x(a + b + c + d) + a^{2} + b^{2} + c^{2} + d^{2} - 2bc - 2ca - 2ab - 2ad - 2bd - 2cd,$$

viz. M having this value, the one other equation above referred to is

$$\Omega\delta^2\Omega - (\delta\Omega)^2 = \Omega^2 M (\delta u)^2;$$

and we then have a system of four equations such as

$$A\delta^2 A - (\delta A)^2 = \Omega^2 \mathfrak{A} (\delta u)^2,$$

where \mathfrak{A} is a linear function of x, and where consequently $\Omega^2 \mathfrak{A}$ can be expressed as a linear function of any two of the four squares A^2 , B^2 , C^2 , D^2 .

To establish the connexion with the Jacobian H and Θ functions, the differential relation between u, x may be taken to be

$$\delta u = \frac{\delta x}{\sqrt{x \cdot 1 - x \cdot 1 - k^2 x}};$$

viz. we have here $d = \infty$, and to adapt the formulæ to this value it is necessary to write $\frac{u}{\sqrt{d}}$ instead of u, and make other easy changes. The result is that Ω differs from D by a constant factor only, so that, instead of the five functions A, B, C, D, Ω , we have only the four functions A, B, C, D. The equation $\Omega\delta^2\Omega - (\delta\Omega)^2 = \Omega^2 M(\delta u)^2$ is replaced by an equation $D\delta^2D - (\delta D)^2 = D^2\mathfrak{D}(\delta u)^2$, or say $\delta^2(\log D) = \mathfrak{D}(\delta u)^2$, which gives a result of the form

$$D = e^{u + \lambda^2 \int \delta u \int \delta u \frac{A^2}{D^2}},$$

showing that D differs from Jacobi's $\Theta(u)$ only by an exponential factor of the form $Ce^{\lambda u^2}$. And it then further appears that A, B, C differ only by factors of the like form from the three numerator functions H(u), H(u+K), $\Theta(u+K)$, so that, neglecting constant factors, the functions

$$\frac{A}{D}$$
, $\frac{B}{D}$, $\frac{C}{D}$ are equal to $\frac{\mathrm{H}(u)}{\Theta(u)}$, $\frac{\mathrm{H}(u+K)}{\Theta(u)}$, $\frac{\Theta(u+K)}{\Theta(u)}$;

that is, to the elliptic functions $\operatorname{sn} u$, $\operatorname{cn} u$, $\operatorname{dn} u$.

www.rcin.org.pl