661.

ON THE DOUBLE 9-FUNCTIONS.

[From the Proceedings of the London Mathematical Society, vol. Ix. (1878), pp. 29, 30.]

Prof. Cayley gave an account of researches* on which he is engaged upon the double 9 -functions. In regard to these, he establishes in a strictly analogous manner the theory of the single 9 -functions, the process for the single functions being in fact as follows:-Considering u, x as connected by the differential relation

$$
\delta u=\frac{\delta x}{\sqrt{a-x . b-x . c-x . d-x}}
$$

then, if A, B, C, D, Ω denote functions of u, viz. for shortness, the single letters are used, instead of writing them as functional symbols, $A(u), B(u)$, \&c., then, by way of definition of these functions (called, the first four of them 9 -functions, and the last an ω-function), we assume

$$
A, B, C, D=\Omega \sqrt{a-x}, \Omega \sqrt{b-x}, \Omega \sqrt{c-x}, \Omega \sqrt{d-x}
$$

respectively, together with one other equation, as presently mentioned. Without in any wise defining the meaning of Ω, we then obtain a set of equations of the form

$$
A \delta B-B \delta A=\Omega^{2} \sqrt{c-x \cdot d-x} \delta u
$$

(mere constant coefficients are omitted), or, what is the same thing,

$$
A \delta B-B \delta A=C D \delta u
$$

which are differential equations defining the nature of the ratio-functions $A: B: C: D$. If, proceeding to second differential coefficients, we attempt to form the expressions for $A \delta^{2} A-(\delta A)^{2}$, \&c., these involve multiples of $\Omega \delta^{2} \Omega-(\delta \Omega)^{2}$; in order to obtain a con-

[^0]venient form, we assume $\Omega \delta^{2} \Omega-(\delta \Omega)^{2}=\Omega^{2} M(\delta u)^{2}$, where M is a function of x. We thus obtain an equation $A \delta^{2} A-(\delta A)^{2}=\Omega^{2} \mathfrak{A}(\delta u)^{2}$, where the value of \mathfrak{H} depends upon that of M. The value of M has to be taken so as to simplify as much as may be the expression of \mathfrak{A}, but so that M shall be a symmetrical function of the constants a, b, c, d : this last condition is assigned in order that the like simplification may present itself in the analogous relations $B \delta^{2} B-(\delta B)^{2}=\Omega^{2} \mathfrak{B}(\delta u)^{2}$, \&c. The proper expression of M is found to be
$$
M=-2 x^{2}+x(a+b+c+d)+a^{2}+b^{2}+c^{2}+d^{2}-2 b c-2 c a-2 a b-2 a d-2 b d-2 c d,
$$
viz. M having this value, the one other equation above referred to is
$$
\Omega \delta^{2} \Omega-(\delta \Omega)^{2}=\Omega^{2} M(\delta u)^{2} ;
$$
and we then have a system of four equations such as
$$
A \delta^{2} A-(\delta A)^{2}=\Omega^{2} \mathscr{A}(\delta u)^{2}
$$
where $\mathfrak{A l}$ is a linear function of x, and where consequently $\Omega^{2} \mathfrak{A}$ can be expressed as a linear function of any two of the four squares $A^{2}, B^{2}, C^{2}, D^{2}$.

To establish the connexion with the Jacobian H and Θ functions, the differential relation between u, x may be taken to be

$$
\delta u=\frac{\delta x}{\sqrt{x .1-x .1-k^{2} x}}
$$

viz. we have here $d=\infty$, and to adapt the formulæ to this value it is necessary to write $\frac{u}{\sqrt{ } d}$ instead of u, and make other easy changes. The result is that Ω differs from D by a constant factor only, so that, instead of the five functions A, B, C, D, Ω, we have only the four functions A, B, C, D. The equation $\Omega \delta^{2} \Omega-(\delta \Omega)^{2}=\Omega^{2} M(\delta u)^{2}$ is replaced by an equation $D \delta^{2} D-(\delta D)^{2}=D^{2} D(\delta u)^{2}$, or say $\delta^{2}(\log D)=\mathscr{D}(\delta u)^{2}$, which gives a result of the form

$$
D=e^{u+\lambda^{2} \int \delta u \int \delta u \frac{A^{2}}{D^{2}}}
$$

showing that D differs from Jacobi's $\Theta(u)$ only by an exponential factor of the form $C e^{\lambda u^{2}}$. And it then further appears that A, B, C differ only by factors of the like form from the three numerator functions $\mathrm{H}(u), \mathrm{H}(u+K), \Theta(u+K)$, so that, neglecting constant factors, the functions

$$
\frac{A}{D}, \frac{B}{D}, \frac{C}{D} \text { are equal to } \frac{\mathrm{H}(u)}{\Theta(u)}, \frac{\mathrm{H}(u+K)}{\Theta(u)}, \frac{\Theta(u+K)}{\Theta(u)} ;
$$

that is, to the elliptic functions $\operatorname{sn} u$, en $u, \mathrm{dn} u$.

[^0]: [* See paper, number 665.]

