664.

ON THE 16-NODAL QUARTIC SURFACE.

[From the Journal für die reine und angewandte Mathematik (Crelle), t. Lxxxiv. (1877), pp. 238-241.]

Prof. Borchardt in the Memoir "Ueber die Darstellung u. s. w." Crelle, t. LxxxiII. (1877), pp. 234-243, shows that the coordinates x, y, z, w may be taken as proportional to four of the double 9 -functions, and that the equation of the surface is then Göpel's relation of the fourth order between these four functions: and he remarks at the end of the memoir that it thus appears that the coordinates x, y, z, w of a point on the surface can be expressed as proportional to algebraic functions, involving square roots only, of two arbitrary parameters ξ, ξ^{\prime}.

It is interesting to develope the theory from this point of view. Writing, as in my paper, "Further investigations on the double 9 -functions," pp. 220-233, [663],

$$
\begin{aligned}
& {[a]=a a^{\prime}} \\
& {[b]=b b^{\prime}} \\
& {[c]=c c^{\prime},} \\
& {[d]=d d^{\prime},} \\
& {[e]=e e^{\prime},} \\
& {[f]=f f^{\prime},} \\
& {[a b]=\frac{1}{\left(\xi-\xi^{\prime}\right)^{2}}\left(\sqrt{a b f c^{\prime} d^{\prime} d^{\prime} e^{\prime}}-\sqrt{a^{\prime} b^{\prime} f^{\prime} c d e}\right)^{2},} \\
& \text { etc., }
\end{aligned}
$$

where on the right-hand sides $a, b, \ldots, a^{\prime}, \ldots$ denote $a-\xi, b-\xi, \ldots, a-\xi^{\prime}, \ldots\left(\xi, \xi^{\prime}\right.$ being here written in place of the x, x^{\prime} of my paper), then the sixteen functions
are proportional to constant multiples of the square-roots of these expressions; viz. the correspondence is

$$
\begin{aligned}
& S_{2}=9_{13}, \quad S_{1}=9_{24}, \quad R_{1}=9_{3}, \quad R=9_{04}, \quad Q=9_{1}, \quad Q_{2}=9_{02}, \\
& i \sqrt[4]{a} \sqrt{[a]}, \quad i \sqrt[4]{b} \sqrt{[b]}, \quad i \sqrt[4]{c} \sqrt{[c]}, \quad i \sqrt[4]{d} \sqrt{[d]}, \quad i \sqrt[4]{e} \sqrt{[e]}, \quad i \sqrt[4]{f} \sqrt{[f]} ; \\
& Q_{1}=9_{2}, \quad P_{1}=9_{34}, \quad P=9_{01}, \quad S=-9_{14}, \quad P_{2}=9_{12}, \quad P_{3}=ף_{5}, \\
& \sqrt[4]{a b} \sqrt{[a b]}, \quad \sqrt[4]{a c} \sqrt{[a c]}, \quad \sqrt[4]{a d} \sqrt{[a d]}, \quad \sqrt[4]{a e} \sqrt{[a e]}, \quad \sqrt[4]{b c} \sqrt{[b c]}, \quad \sqrt[4]{b d} \sqrt{[b d]} ; \\
& \begin{array}{cccc}
S_{3}=9_{23}, & Q_{3}=9_{0}, & R_{3}=9_{4}, & R_{2}=9_{03}, \\
\sqrt[4]{b e} \sqrt{[b e}] & \sqrt[4]{c d} \sqrt{[c d]}, & \sqrt[4]{c e} \sqrt{[c e}], & \sqrt[4]{d e} \sqrt{[d e}] ;
\end{array}
\end{aligned}
$$

where, under the signs $\sqrt[4]{ }, a$ signifies $b c d e f$, that is, $b c . b d . b e . b f . c d . c e . c f . d e . d f . e f$, and $a b$ signifies $a b f . c d e$, that is, $a b . a f . b f . c d . c e . d e$, in which expressions $b c, b d, \ldots$, $a b, a f, \ldots$ signify the differences $b-c, b-d, \ldots, a-b, a-f, \ldots$ But in what follows, we are not concerned with the values of these constant multipliers.

Prof. Borchardt's coordinates x, y, z, w are

$$
x=9_{0}=P ; y=9_{23}=S_{3} ; \quad z=9_{14}=-S ; w=9_{5}=P_{3} ;
$$

viz. P, S, P_{3}, S_{3} are a set connected by Göpel's relation of the fourth order-and this relation can be found (according to Göpel's method) by showing that Q^{2} and R^{2} are each of them a linear function of the four squares $P^{2}, P_{3}{ }^{2}, S^{2}, S_{3}{ }^{2}$, and further that $Q R$ is a linear function of $P S$ and $P_{3} S_{3}$; for then, squaring the expression of $Q R$, and for Q^{2} and R^{2} substituting their values, we have the required relation of the fourth order between P, S, P_{3}, S_{3}.

Now we have $P, S, P_{3}, S_{3}, Q, R=$ constant multiples of $\sqrt{[a c]}, \sqrt{[a b]}, \sqrt{[c d]}$, $\sqrt{[b d]}, \sqrt{[b]}, \sqrt{[c]}$ respectively: and it of course follows that we must have the like relations between these six quantities; viz. we must have $[b],[c]$ each of them a linear function of $[a c],[a b],[c d],[b d]$; and moreover $\sqrt{[b]} \sqrt{[c]}$ a linear function of $\sqrt{[a c]} \sqrt{ }[a b]$ and $\sqrt{ }[b d] \sqrt{[c d]}$.

As regards this last relation, starting from the formulæ

$$
\begin{aligned}
& \sqrt{[a c]}=\frac{1}{\xi-\xi^{\prime}}\left\{\sqrt{a c f b^{\prime} d^{\prime} e^{\prime}}+\sqrt{a^{\prime} c^{\prime} f^{\prime} b d e}\right\} \\
& \sqrt{[b d]}=\frac{1}{\xi-\xi^{\prime}}\left\{\sqrt{b d f a^{\prime} c^{\prime} e^{\prime}}+\sqrt{b^{\prime} d^{\prime} f^{\prime} a c e}\right\} \\
& \sqrt{[a b]}=\frac{1}{\xi-\xi^{\prime}}\left\{\sqrt{a b f^{\prime} c^{\prime} e^{\prime} e^{\prime}}+\sqrt{a^{\prime} b^{\prime} f^{\prime} c d e}\right\} \\
& \sqrt{[c d]}=\frac{1}{\xi-\xi^{\prime}}\left\{\sqrt{c d f a^{\prime} b^{\prime} e^{\prime}}+\sqrt{c^{\prime} d^{\prime} f^{\prime} a b e}\right\}
\end{aligned}
$$

we have at once

$$
\begin{aligned}
& \sqrt{[a c]} \sqrt{[a b]}=\frac{1}{\left(\xi-\xi^{\prime}\right)^{2}}\left\{\left(a f d^{\prime} e^{\prime}+a^{\prime} f^{\prime} d e\right) \sqrt{b c b^{\prime} c^{\prime}}+\left(b c^{\prime}+b^{\prime} c\right) \sqrt{a d e a^{\prime} d^{\prime} e^{\prime}}\right\} \\
& \sqrt{[b d]} \sqrt{[c d]}=\frac{1}{\left(\xi-\xi^{\prime}\right)^{2}}\left\{\left(d f a^{\prime} e^{\prime}+d^{\prime} f^{\prime} a e\right) \sqrt{b c b^{\prime} c^{\prime}}+\left(b c^{\prime}+b^{\prime} c\right) \sqrt{a d e a^{\prime} d^{\prime} e^{\prime}}\right\}
\end{aligned}
$$

the difference of these two expressions is

$$
=\frac{1}{\left(\xi-\xi^{\prime}\right)^{2}}\left(a d^{\prime}-a^{\prime} d\right)\left(f e^{\prime}-f^{\prime} e\right) \sqrt{b c b^{\prime} c^{\prime}},
$$

where substituting for $a, d, e, f, a^{\prime}, \ldots$ their values $a-\xi, d-\xi, e-\xi, f-\xi, a-\xi^{\prime}, \ldots$ we have $a d^{\prime}-a^{\prime} d=(a-d)\left(\xi-\xi^{\prime}\right), f e^{\prime}-f^{\prime} e=(f-e)\left(\xi-\xi^{\prime}\right)$; also $\sqrt{b c b^{\prime} c^{\prime}}=\sqrt{[b]} \sqrt{[c]}$; and we have thus the required relation

$$
\sqrt{[a c]} \sqrt{[a b]}-\sqrt{[b d]} \sqrt{[c d]}=-(a-d)(e-f) \sqrt{[b]} \sqrt{[c]} .
$$

As regards the first mentioned relation, if for greater generality, θ being arbitrary, we write $[\theta]=\theta \theta^{\prime}$, that is, $=(\theta-\xi)\left(\theta-\xi^{\prime}\right)$, then it is easy to see that there exists a relation of the form

$$
\nabla[\theta]=A[a b]+B[a c]+C[b d]+D[c d]
$$

where $A+B+C+D=0$. The right-hand side is thus a linear function of the differences $[a b]-[a c],[a b]-[b d],[a b]-[c d]$; and each of these, as the irrational terms disappear and the rational terms divide by $\left(\xi-\xi^{\prime}\right)^{2}$, is a mere linear function of $1, \xi+\xi^{\prime}, \quad \xi \xi^{\prime}$; whence there is a relation of the form in question. I found without much difficulty the actual formula; viz. this is

where observe that on the right-hand side the last three determinants are obtained from the first one by interchanging b, c : or a, d : or b, c and a, d simultaneously: a single interchange gives the sign - , but for two interchanges the sign remains + .

Writing successively $\theta=b$ and $\theta=c$, we obtain
$(a-d)(e-f)\left|\begin{array}{ccc}1, & e+f, & e f \\ 1, & b+c, & b c \\ 1, & a+d, & a d\end{array}\right|[b]$
$=(a-f)(b-d)(b-e)[a c]-(a-b)(b-f)(d-e)[a b]$ $+(a-b)(b-e)(d-f)[c d]-(a-e)(b-d)(b-f)[b d] ;$
$(a-d)(e-f)\left|\begin{array}{lll}1, & e+f, & \text { ef } \\ 1, & b+c, & b c \\ 1, & a+d, & a d\end{array}\right|[c]$
$=-(a-c)(c-f)(d-e)[a c]+(a-f)(c-d)(c-e)[a b]$

$$
-(a-e)(c-d)(c-f)[c d]+(a-c)(c-e)(d-f)[b d]
$$

which values of $[b]$ and $[c]$, combined with the foregoing equation

$$
(a-d)(e-f) \sqrt{[b]} \sqrt{[c]}=-\sqrt{[a c]} \sqrt{[a b]}+\sqrt{[c d]} \sqrt{[b d]},
$$

give the required quartic equation between $\sqrt{[a c]}, \sqrt{[a b]}, \sqrt{[c d]}, \sqrt{[b d]}$.

Cambridge, 2 August, 1877.

