670.

[NOTE ON MR MUIR'S SOLUTION OF A "PROBLEM OF ARRANGEMENT.']
[From the Proceedings of the Royal Society of Edinburgh, t. Ix. (1878), pp. 388-391.]
The investigation may be carried further: writing for shortness u_{3}, u_{4}, \&c., in place of $\Psi(3), \Psi(4), \& c$. , the equations are

$$
\begin{aligned}
& u_{3}=1 \\
& u_{4}=2 u_{3} \\
& u_{5}=3 u_{4}+6 u_{3}+1, \\
& u_{6}=4 u_{5}+8 u_{4}+12 u_{3}, \\
& u_{7}=5 u_{6}+10 u_{5}+15 u_{4}+18 u_{3}+1 .
\end{aligned}
$$

Hence assuming

$$
u=u_{3}+u_{4} x+u_{5} x^{2}+u_{6} x^{3}+u_{7} x^{4}+\ldots
$$

we have

$$
\begin{aligned}
u=\frac{1}{1-x^{2}} & +u_{3}\left(2 x+6 x^{2}+12 x^{3}+18 x^{4}+\ldots\right) \\
& +u_{4}\left(3 x^{2}+8 x^{3}+15 x^{4}+22 x^{5}+\ldots\right) \\
& +u_{5}\left(4 x^{3}+10 x^{4}+18 x^{5}+26 x^{6}+\ldots\right) \\
& +u_{6}\left(5 x^{4}+12 x^{5}+21 x^{6}+30 x^{7}+\ldots\right)
\end{aligned}
$$

so that, forming the equation

$$
\begin{aligned}
u^{\prime} \frac{x^{2}}{(1-x)^{2}}= & u_{4}\left(x^{2}+2 x^{3}+3 x^{4}+4 x^{5}+\ldots\right) \\
& +u_{5}\left(2 x^{3}+4 x^{4}+6 x^{5}+8 x^{6}+\ldots\right) \\
& +u_{6}\left(3 x^{4}+6 x^{5}+9 x^{6}+12 x^{7}+\ldots\right)
\end{aligned}
$$

c. X .
where u^{\prime} denotes $\frac{d u}{d x}$, we have

$$
\begin{aligned}
u-u^{\prime} \frac{x^{3}}{(1-x)^{2}} & =\frac{1}{1-x^{2}}+\left(u_{3}+u_{4} x+u_{5} x^{2}+\ldots\right)\left(2 x+6 x^{2}+12 x^{3}+18 x^{4}+\ldots\right) \\
& =\frac{1}{1-x^{2}}+u\left(2 x+6 x^{2}+12 x^{3}+18 x^{4}+\ldots\right)
\end{aligned}
$$

or, what is the same thing,
that is,

$$
u-u^{\prime} \frac{x^{2}}{(1-x)^{2}}=\frac{1}{1-x^{2}}+u\left\{\frac{2 x}{(1-x)^{3}}-\frac{2 x^{4}}{(1-x)^{3}(1+x)}\right\}
$$

$$
\left\{1-\frac{2 x}{(1-x)^{3}}+\frac{2 x^{4}}{(1-x)^{3}(1+x)}\right\} u-\frac{x^{2}}{(1-x)^{2}} u^{\prime}=\frac{1}{1-x^{2}}
$$

This equation may be simplified: write

$$
u=-\frac{1-x^{2}}{x^{4}} Q,=\left(-\frac{1}{x^{4}}+\frac{1}{x^{2}}\right) Q
$$

then

$$
u^{\prime}=\left(\frac{4}{x^{5}}-\frac{2}{x^{3}}\right) Q+\frac{1-x^{2}}{x^{4}} Q^{\prime}
$$

and the equation is

$$
\left\{-\frac{1-x^{2}}{x^{4}}+\frac{2}{x^{3}} \frac{1+x}{(1+x)^{2}}-\frac{2}{(1-x)^{2}}-\frac{4}{x^{3}} \frac{1}{(1-x)^{2}}+\frac{2}{x(1-x)^{2}}\right\} Q+\frac{1+x}{(1+x) x^{2}} Q^{\prime}=\frac{1}{1-x^{2}} ;
$$

that is,

$$
\left\{-\frac{1}{x^{4}}+\frac{1}{x^{2}}-\frac{2}{x^{3}(1-x)^{2}}+\frac{2}{x^{2}(1-x)^{2}}+\frac{2}{x(1-x)^{2}}-\frac{2}{(1-x)^{2}}\right\} Q+\frac{1+x}{(1-x) x^{2}} Q^{\prime}=\frac{1}{1-x^{2}},
$$

viz. this is

$$
\left\{-\frac{(1-x)^{2}}{x^{4}}+\frac{(1-x)^{2}}{x^{2}}-\frac{2}{x^{3}}+\frac{2}{x^{2}}+\frac{2}{x}-2\right\} Q+\frac{1-x^{2}}{x^{2}} Q^{\prime}=\frac{1-x}{1+x},
$$

that is,

$$
\left\{-\frac{1}{x^{4}}+\frac{2}{x^{2}}-1\right\} Q+\frac{1-x^{2}}{x^{2}} Q^{\prime}=\frac{1-x}{1+x}
$$

or

$$
-\frac{\left(1-x^{2}\right)^{2}}{x^{4}} Q+\frac{1-x^{2}}{x^{2}} Q^{\prime}=\frac{1-x}{1+x}
$$

or finally,

$$
Q\left(1-\frac{1}{x^{2}}\right)+Q^{\prime}=\frac{x^{2}}{(1+x)^{2}},
$$

giving

$$
Q=e^{-\left(x+\frac{1}{x}\right)} \int \frac{x^{2}}{(x+1)^{2}} e^{x+\frac{1}{x}} d x
$$

and thence

$$
u=\frac{x^{2}-1}{x^{4}} e^{-\left(x+\frac{1}{x}\right)} \int \frac{x^{2}}{(x+1)^{2}} e^{\left(x+\frac{1}{x}\right)} d x
$$

which is the value of the generating function

$$
u=u_{3}+u_{4} x+u_{5} x^{2}+\& c .
$$

But for the purpose of calculation it is best to integrate by a series the differential equation for Q : assuming

$$
Q=-q_{3} x^{4}-q_{4} x^{5}-q_{5} x^{6}-\ldots
$$ we find

$$
\begin{array}{ll}
q_{4}=4 q_{3} & -2 \\
q_{5}=5 q_{4} & +q_{3} \\
+3 \\
q_{6}=6 q_{5} & +q_{4}-4 \\
q_{7}=7 q_{6} & +q_{5}+5 \\
\vdots
\end{array}
$$

We have thus for $q_{3}, q_{4}, q_{5}, \ldots$ the values $1,2,14,82,593,4820, \ldots$, and thence

$$
u=\left(1-x^{2}\right)\left(1+2 x+14 x^{2}+82 x^{3}+593 x^{4}+4820 x^{5}+\ldots\right),
$$

viz. writing

$$
\begin{array}{llllll}
1 & 2 & 14 & 82 & 593 & 4820 \ldots
\end{array}
$$

$$
\begin{array}{llll}
-1 & -2 & -14 & -82 \\
\hline
\end{array}
$$

the values of u_{3}, u_{4}, \ldots are $1,2,13,80,579,4738, \ldots$, agreeing with the results found above.

In the more simple problem, where the arrangements of the n things are such that no one of them occupies its original place, if u_{n} be the number of arrangements, we have
and writing

$$
\begin{aligned}
u_{2} & =1 \\
u_{3} & =2 u_{2}=1, \\
u_{4} & =3\left(u_{3}+u_{2}\right)=9, \\
u_{5} & =4\left(u_{4}+u_{3}\right)=44, \\
\vdots & \\
u_{n+1} & =n\left(u_{n}+u_{n-1}\right),
\end{aligned}
$$

we find
that is,

$$
u=1+\left(2 x+3 x^{2}\right) u+\left(x^{2}+x^{3}\right) u^{\prime} ;
$$

$$
\left(-1+2 x+3 x^{2}\right) u+\left(x^{2}+x^{3}\right) u^{\prime}=-1
$$

or, what is the same thing,

$$
u^{\prime}+\left(\frac{3}{x}-\frac{1}{x^{2}}\right) u=-\frac{1}{x^{2}(1+x)}
$$

whence

$$
u=x^{-3} e^{-\frac{1}{x}} \int \frac{-x}{1+x} e^{\frac{1}{x}} d x
$$

But the calculation is most easily performed by means of the foregoing equation of differences, itself obtained from the differential equation written in the foregoing form,

$$
\left(-1+2 x+3 x^{2}\right) u+\left(x^{2}+x^{3}\right) u^{\prime}=-1 .
$$

