671.

ON A SIBI-RECIPROCAL SURFACE.

[From the Berlin. Akad. Monatsber., (1878), pp. 309-313.]
The question of the generation of a sibi-reciprocal surface-that is, a surface the reciprocal of which is of the same order and has the same singularities as the original surface-was considered by me in the year 1868, see Proc. London Math. Soc. t. II. pp. 61-63, [part of 387], where it is remarked that if a surface be considered as the envelope of a quadric surface varying according to given conditions, then the reciprocal surface is given as the envelope of a quadric surface varying according to the reciprocal conditions; whence, if the conditions be sibi-reciprocal, it follows that the surface is a sibi-reciprocal surface. And I gave as instances the surface which is the envelope of a quadric surface touching each of 8 given lines; and also the surface called the "tetrahedroid," which is a homographic transformation of Fresnel's Wave Surface and a particular case of the quartic surface with 16 nod $3 s$.

The interesting surface of the order 8, recently considered by Herr Kummer, Berl. Monatsber., Jan. 1878, pp. 25-36, is included under the theory. In fact, if we consider a line L, whereof the six coordinates

$$
a, b, c, f, g, h
$$

satisfy each of the three linear relations

$$
\begin{aligned}
& f_{1} a+g_{1} b+h_{1} c+a_{1} f+b_{1} g+c_{1} h=0, \\
& f_{2} a+g_{2} b+h_{2} c+a_{2} f+b_{2} g+c_{2} h=0, \\
& f_{3} a+g_{3} b+h_{3} c+a_{3} f+b_{3} g+c_{3} h=0,
\end{aligned}
$$

the locus of this line is a quadric surface the equation of which is

$$
\begin{aligned}
T= & (a g h) x^{2}+(b h f) y^{2}+(c f g) z^{2}+(a b c) w^{2} \\
& +[(a b g)-(c a h)] x w+[(b f g)+(c h f)] y z \\
& +[(b c h)-(a b f)] y w+[(c g h)+(a f g)] z x \\
& +[(c a f)-(b c g)] z w+[(a h f)+(b g h)] x y=0,
\end{aligned}
$$

where (agh) is used to denote the determinant $\left|\begin{array}{lll}a_{1}, & g_{1}, & h_{1} \\ a_{2}, & g_{2}, & h_{2} \\ a_{3}, & g_{3}, & h_{3}\end{array}\right|$, and so for the other symbols. Considering the reciprocal of the line L in regard to the quadric surface $X^{2}+Y^{2}+Z^{2}+W^{2}=0$, the six coordinates of the reciprocal line are

$$
f, g, h, a, b, c
$$

and it is hence at once seen that the locus of the reciprocal line is the quadric surface obtained from the equation $T=0$ by interchanging therein the symbolical quantities a, b, c and f, g, h : viz. writing also $(\xi, \eta, \zeta, \omega)$ in place of (x, y, z, w), the new equation is

$$
\begin{aligned}
T^{\prime}= & (f b c) \xi^{2}+(g c a) \eta^{2}+(h a b) \zeta^{2}+(f g h) \omega^{2} \\
& +[(f g b)-(h f c)] \xi \omega+[(f a b)+(h c a)] \eta \zeta \\
& +[(g h c)-(f g a)] \eta \omega+[(g b c)+(f a b)] \zeta \xi \\
& +[(h f a)-(g h b)] \xi \omega+[(h c a)+(g b c)] \xi \eta=0
\end{aligned}
$$

or, what is the same thing, this equation $T^{\prime}=0$ is the equation of the original quadric surface (the locus of L) expressed in terms of the plane-coordinates ξ, η, ζ, ω.

Now considering each of the quantities $a_{1}, b_{1}, c_{1}, f_{1}, g_{1}, h_{1}, a_{2}, b_{2}$, etc., a_{3}, b_{3}, etc., as a given linear function of a variable parameter λ, say $a_{1}=a_{1}{ }^{\prime}+a_{1}{ }^{\prime \prime} \lambda, b_{1}=b_{1}{ }^{\prime}+b_{1}{ }^{\prime \prime} \lambda$, etc., the equation $T=0$ takes the form

$$
A \lambda^{3}+3 B \lambda^{2}+3 C \lambda+D=0
$$

where A, B, C, D are given quadric functions of the coordinates x, y, z, w; and the envelope of the quadric surface $T=0$ is Herr Kummer's surface of the eighth order

$$
(A D-B C)^{2}-4\left(A C-B^{2}\right)\left(B D-C^{2}\right)=0
$$

In like manner the equation $T^{\prime}=0$ takes the form

$$
A^{\prime} \lambda^{3}+3 B^{\prime} \lambda^{2}+3 C^{\prime \prime} \lambda+D^{\prime}=0
$$

where $A^{\prime}, B^{\prime}, C^{\prime \prime}, D^{\prime}$ are given functions of the coordinates ξ, η, ζ, ω; and we have

$$
\left(A^{\prime} D^{\prime}-B^{\prime} C^{\prime}\right)^{2}-4\left(A^{\prime} C^{\prime}-B^{\prime 2}\right)\left(B^{\prime} D^{\prime}-C^{\prime 2}\right)=0
$$

as the equation of the reciprocal surface; or (what is the same thing) as that of the original surface, regarding ξ, η, ζ, ω as plane-coordinates.

In regard to the foregoing equation $T=0$, it is to be noticed that, if a_{1}, b_{1}, c_{1}, $f_{1}, g_{1}, h_{1} ; a_{2}, b_{2}$, etc., a_{3}, b_{3}, etc., instead of being arbitrary coefficients, were the coordinates of three given lines L_{1}, L_{2}, L_{3} respectively; that is, if we had

$$
\begin{aligned}
& a_{1} f_{1}+b_{1} g_{1}+c_{1} h_{1}=0, \\
& a_{2} f_{2}+b_{2} g_{2}+c_{2} h_{2}=0, \\
& a_{3} f_{3}+b_{3} g_{3}+c_{3} h_{3}=0,
\end{aligned}
$$

then the three linear relations satisfied by (a, b, c, f, g, h) would express that the line L was a line meeting each of the three given lines L_{1}, L_{2}, L_{3} : the locus is therefore the quadric surface which passes through these three lines; and I have in my paper "On the six coordinates of a Line," Camb. Phil. Trans., t. xi. (1869), pp. 290-323, [435], found the equation to be the foregoing equation $T=0$. But it is easy to see that the same equation subsists in the case where the three equations $a_{1} f_{1}+b_{1} g_{1}+c_{1} h_{1}=0$, etc., are not satisfied. For the several coefficients being perfectly general, any one of the three linear relations may be replaced by a linear combination of these equations; that is, in place of $a_{1}, b_{1}, c_{1}, f_{1}, g_{1}, h_{1}$, we may write $a_{1}^{\prime}, b_{1}^{\prime}, c_{1}^{\prime}, f_{1}^{\prime}, g_{1}^{\prime}, h_{1}^{\prime}$, where $a_{1}{ }^{\prime}=\theta_{1} a_{1}+\theta_{2} a_{2}+\theta_{3} a_{3}, \quad b_{1}{ }^{\prime}=\theta_{1} b_{1}+\theta_{2} b_{2}+\theta_{3} b_{3}$, etc.; and these factors $\theta_{1}, \theta_{2}, \theta_{3}$ may be conceived to be such that the condition in question $a_{1}^{\prime} f_{1}^{\prime}+b_{1}^{\prime} g_{1}^{\prime}+c_{1}^{\prime} h_{1}^{\prime}=0$ is satisfied. Similarly the second set of coefficients may be replaced by $a_{2}^{\prime}, b_{2}^{\prime}, c_{2}^{\prime}, f_{2}^{\prime}, g_{2}^{\prime}, h_{2}^{\prime}$, where $a_{2}{ }^{\prime}=\phi_{1} a_{1}+\phi_{2} a_{2}+\phi_{3} a_{3}$, etc., and the condition $a_{2}^{\prime} f_{2}^{\prime}+b_{2}^{\prime} g_{2}^{\prime}+c_{2}^{\prime} h_{2}^{\prime}=0$ is satisfied: and the third set by $a_{3}{ }^{\prime}, b_{3}{ }^{\prime}, c_{3}{ }^{\prime}, f_{3}^{\prime}, g_{3}{ }^{\prime}, h_{3}{ }^{\prime}$, where $a_{3}{ }^{\prime}=\psi_{1} a_{1}+\psi_{2} a_{2}+\psi_{3} a_{3}$, etc., and the condition $a_{3}^{\prime} f_{3}^{\prime}+b_{3}^{\prime} g_{3}^{\prime}+c_{3}^{\prime} h_{3}^{\prime}=0$ is satisfied. We have therefore an equation $0=\left(a^{\prime} g^{\prime} h^{\prime}\right) x^{2}+$ etc., which only differs from the equation $T=0$ by having therein the accented letters in place of the unaccented ones: and, substituting for the accented letters their values, the whole divides by the determinant $(\theta \phi \psi)$, and throwing this out we obtain the required equation $T=0$.

But it is easier to obtain the equation $T=0$ directly. We have

$$
\begin{array}{r}
h y-g z+a w=0 \\
-h x \quad+f z+b w=0 \\
g x-f y \quad+c w=0 \\
-a x-b y-c z \quad=0
\end{array}
$$

viz. in virtue of the equation $a f+b g+c h=0$ which connects the six coordinates, these four equations are equivalent to two independent equations which are the equations of the line (a, b, c, f, g, h) : or, what is the same thing, any three of these equations imply the fourth equation and also the relation $a f+b g+c h=0$.

We might, from the three linear relations and any three of the last-mentioned four equations, eliminate a, b, c, f, g, h and so obtain the required equation $T=0$; but it is better, introducing the arbitrary coefficients $\alpha, \beta, \gamma, \delta$, to employ all the four equations. The result of the elimination is thus given in the form

$$
\left|\begin{array}{rrrrrr}
\alpha, & w, & & & & -z, \\
\beta, & & w, & & z, & -x \\
\gamma, & & & w, & -y, & x, \\
\delta, & x, & y, & z, & & \\
& f_{1}, & g_{1}, & h_{1}, & a_{1}, & b_{1}, \\
& c_{1} \\
f_{2}, & g_{2}, & h_{2}, & a_{2}, & b_{2}, & c_{2} \\
& f_{3}, & g_{3}, & h_{3}, & a_{3}, & b_{3}, \\
c_{3}
\end{array}\right|=0 \text {, }
$$

viz. the left-hand side here contains the factor $-(\alpha x+\beta y+\gamma z+\delta w)$; throwing this out, we obtain the required quadric equation $T=0$. If for the calculation of T we compare the terms containing δ, we have

$$
T w=\left|\right|,
$$

where observe that, writing $w=0$, the right-hand side vanishes as containing the factor

$$
\left|\begin{array}{rr}
-z, & y \\
z, & -x \\
-y, & x,
\end{array}\right|
$$

Hence the right-hand side divides by w; and one of its terms being evidently $w^{3}(a b c)$, T contains as it should do the term ($a b c$) w^{2} : the remaining terms can be found without any difficulty, and the foregoing expression for T is thus verified.

