680.

ON THE HESSIAN OF A QUARTIC SURFACE.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xv. (1878), pp. 141-144.]

The surface considered is
or say

$$
U=k^{2} w^{2}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}\right)-\left(x^{2}+y^{2}+z^{2}\right)^{2}=0
$$

$$
U=k^{2} w^{2} P-Q^{2}=0
$$

viz. this may be considered as the central inverse of the ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}-1=9
$$

The values of the second derived functions, or terms of the Hessian determinant

$$
\left|\begin{array}{llll}
a, & h, & g, & l \\
h, & b, & f, & m \\
g, & f, & c, & n \\
l, & m, & n, & d
\end{array}\right|
$$

are
and we thence have

$$
\begin{aligned}
& b c-f^{2}=\frac{k^{4}}{b^{2} c^{2}}-\frac{k^{2} w^{2}}{b^{2}}\left(2 Q+4 z^{2}\right)-\frac{k^{2} w^{2}}{c^{2}}\left(2 Q+4 y^{2}\right)+4 Q^{2}+8 Q\left(y^{2}+z^{2}\right) \\
& g h-a f=4 y z\left(\frac{k^{2} w^{2}}{a^{2}}-2 Q\right)
\end{aligned}
$$

whence, forming the analogous quantities $c a-g^{2}$, \&c., it is easy to obtain

$$
\begin{aligned}
a b c-a f^{2}-b g^{2}-c h^{2}+2 f g h & \\
= & \frac{k^{6} w^{6}}{a^{2} b^{2} c^{2}} \\
& -k^{4} w^{4}\left\{2 Q\left(\frac{1}{b^{2} c^{2}}+\frac{1}{c^{2} a^{2}}+\frac{1}{a^{2} b^{2}}\right)+4\left(\frac{x^{2}}{b^{2} c^{2}}+\frac{y^{2}}{c^{2} a^{2}}+\frac{z^{2}}{a^{2} b^{2}}\right)\right\} \\
& +k^{2} w^{2}\left\{12 Q^{2}\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right)-8 Q P\right\} \\
& -24 Q^{3},
\end{aligned}
$$

which is to be multiplied by $d,=k^{2} P$. And

$$
\begin{aligned}
& -\left[l^{2}\left(b c-f^{2}\right)+m^{2}\left(c a-g^{2}\right)+n^{2}\left(a b-h^{2}\right)\right. \\
& +2 m n(g h-a f)+2 n l(h f-b g)+2 l m(f g-c h)] \\
& =-\frac{4 k^{8} w^{8} P}{a^{2} b^{2} c^{2}} \\
& -4 k^{e} w^{4}\left[2 Q\left\{\frac{x^{2}}{a^{4}}\left(\frac{1}{b^{2}}+\frac{1}{c^{2}}\right)+\frac{y^{2}}{b^{4}}\left(\frac{1}{c^{2}}+\frac{1}{a^{2}}\right)+\frac{z^{2}}{c^{4}}\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right)\right\}\right. \\
& \left.\quad+\frac{4 y^{2} z^{2}}{a^{2}}\left(\frac{1}{b^{2}}-\frac{1}{c^{2}}\right)^{2}+\frac{4 z^{2} x^{2}}{b^{2}}\left(\frac{1}{c^{2}}-\frac{1}{a^{2}}\right)^{2}+\frac{4 x^{2} y^{2}}{c^{2}}\left(\frac{1}{a^{2}}-\frac{1}{b^{2}}\right)^{2}\right] \\
& +4 k^{4} w^{2}\left[4 Q^{2}\left(\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}\right)\right. \\
& \left.\quad+8 Q\left\{y^{2} z^{2}\left(\frac{1}{b^{2}}-\frac{1}{c^{2}}\right)^{2}+z^{2} x^{2}\left(\frac{1}{c^{2}}-\frac{1}{a^{2}}\right)^{2}+x^{2} y^{2}\left(\frac{1}{a^{2}}-\frac{1}{b^{2}}\right)^{2}\right\}\right]
\end{aligned}
$$

which is

$$
\begin{aligned}
= & -\frac{4 k^{8} w^{6} P}{a^{2} b^{2} c^{2}} \\
& +k^{6} w^{4}\left\{8\left(\frac{1}{b^{2} c^{2}}+\frac{1}{c^{2} a^{2}}+\frac{1}{a^{2} b^{2}}\right) P Q-\frac{24}{a^{2} b^{2} c^{2}} Q^{2}+16\left(\frac{x^{2}}{b^{2} c^{2}}+\frac{y^{2}}{c^{2} a^{2}}+\frac{z^{2}}{a^{2} b^{2}}\right) P\right\} \\
& +k^{4} w^{2}\left\{-48\left(\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}\right) Q^{2}+32 P^{2} Q\right\} .
\end{aligned}
$$

Hence, uniting the two parts, we have

$$
\begin{aligned}
H= & k^{8} w^{6}\left(-\frac{3}{a^{2} b^{2} c^{2}} P\right) \\
& +k^{6} w^{4}\left\{\begin{array}{c}
6\left(\frac{1}{b^{2} c^{2}}+\frac{1}{c^{2} a^{2}}+\frac{1}{a^{2} b^{2}}\right) P Q \\
-\frac{24}{a^{2} b^{2} c^{2}} Q^{2} \\
+12\left(\frac{x^{2}}{b^{2} c^{2}}+\frac{y^{2}}{c^{2} a^{2}}+\frac{z^{2}}{a^{2} b^{2}}\right) P
\end{array}\right\} \\
& +k^{4} w^{2}\left\{\begin{array}{l}
12\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right) P Q^{2} \\
-48\left(\frac{x^{2}}{b^{2} c^{2}}+\frac{y^{2}}{c^{2} a^{2}}+\frac{z^{2}}{a^{2} b^{2}}\right) Q^{2} \\
+24 P^{2} Q
\end{array}\right\} \\
& +k^{2} \quad\left\{-24 P Q^{3}\right\}
\end{aligned}
$$

Writing herein $Q^{2}=k^{2} w^{2} P-U$, and transposing all the terms which contain U, we have

$$
\begin{aligned}
& H+k^{2} U\left\{-\frac{24 k^{4} w^{4}}{a^{2} b^{2} c^{2}}+12 k^{2} w^{2}\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right) P-48 k^{2} w^{2}\left(\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}\right)-24 P Q\right\} \\
&=k^{6} w^{4} P\left(\begin{array}{l}
-\frac{27 k^{2}}{a^{2} b^{2} c^{2}} w^{2} \\
+16\left(\frac{1}{b^{2} c^{2}}+\frac{1}{c^{2} a^{2}}+\frac{1}{a^{2} b^{2}}\right) Q \\
+12\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right) P \\
+12\left(\frac{x^{2}}{b^{2} c^{2}}+\frac{y^{2}}{c^{2} a^{2}}+\frac{z^{2}}{a^{2} b^{2}}\right) \\
-48\left(\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}\right)
\end{array}\right\}
\end{aligned}
$$

where, in the term in $\}$, the last four lines are

$$
\begin{aligned}
= & 18\left(\frac{1}{b^{2} c^{2}}+\frac{1}{c^{2} a^{2}}+\frac{1}{a^{2} b^{2}}\right) Q \\
& -36\left(\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}\right)
\end{aligned}
$$

Hence, writing for shortness

$$
\Theta=-\frac{2 k^{4}}{a^{2} b^{2} c^{2}} w^{4}+k^{2} w^{2}\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right) P-4 k^{2} w^{2}\left(\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}\right)-2 P Q
$$

we have

$$
H+12 k^{2} \Theta U=9 k^{6} w^{4} P\left\{-\frac{3 k^{2}}{a^{2} b^{2} c^{2}} w^{2}+2\left(\frac{1}{b^{2} c^{2}}+\frac{1}{c^{2} a^{2}}+\frac{1}{a^{2} b^{2}}\right) Q-4\left(\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}\right)\right\}
$$

Hence, recollecting that $U=k^{2} w^{2} P-Q^{2}$, the Hessian curve of the order 32 breaks up into

$$
\begin{gathered}
U=0, w^{4}=0, \text { that is, } Q^{2}=0, w^{4}=0 \text {, or the nodal conic, } \\
\quad w=0, Q=0,8 \text { times (order } 16 \text {), } \\
U=0, P=0 \text {, that is, } Q^{2}=0, P=0 \text {, or the quadriquadric, } \\
P=0, Q=0,2 \text { times (order } 8 \text {), }
\end{gathered}
$$

and into a curve (order 8) which is

$$
k^{2} w^{2} P-Q^{2}=0,
$$

$$
-\frac{3 k^{2}}{a^{2} b^{2} c^{2}} w^{2}+2\left(\frac{1}{b^{2} c^{2}}+\frac{1}{c^{2} a^{2}}+\frac{1}{a^{2} b^{2}}\right) Q-4\left(\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}\right)=0
$$

viz. this, the intersection of the surface with a quadric surface, is the proper Hessian curve.

