683.

ON THE FUNCTION $\arctan(x+iy)$.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xv. (1878), pp. 171-174.]

THE determination of the function in question, the arc to a given imaginary sine, is considered in Cauchy's *Exercises d'Analyse*, &c., t. III. (1844), p. 382; but it appears, by two hydrodynamical papers by Mr Ferrers and Mr Lamb, *Quarterly Mathematical Journal*, t. XIII. (1874), p. 115, and t. XIV. (1875), p. 40, that the question is connected with the theory of confocal conics.

Taking $c = \sqrt{a^2 - b^2}$ a positive real quantity which may ultimately be put = 1, the question is to find the real quantities ξ , η , such that

$$\xi + i\eta = \arcsin \frac{1}{c} (x + iy),$$

or say

$$x + iy = c\sin\left(\xi + i\eta\right),$$

so that

$$x = c \sin \xi \cos i\eta, \quad iy = c \cos \xi \sin i\eta$$

It is convenient to remark that if a value of $\xi + i\eta$ be $\xi' + i\eta'$, then the general value is $2m\pi + \xi' + i\eta'$ or $(2m+1)\pi - (\xi' + i\eta')$; hence, η may be made positive or negative at pleasure; $\cos i\eta$ is in each case positive, but $\frac{1}{i} \sin i\eta$ has the same sign as η ; hence $\cos \xi$ has the same sign as x, but $\sin \xi$ has the same sign as y or the reverse sign, according as η is positive or negative; for any given values of x and y, we obtain, as will appear, determinate positive values of $\sin^2 \xi$ and $\cos^2 \xi$; and the square roots of these must therefore be taken so as to give to $\sin \xi$, $\cos \xi$ their proper signs respectively.

www.rcin.org.pl

Suppose that λ , μ are the elliptic coordinates of the point (x, y); viz. that we have

$$\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} = 1,$$
$$\frac{x^2}{a^2 + \mu} + \frac{y^2}{b^2 + \mu} = 1,$$

where $a^2 + \lambda$, $b^2 + \lambda$, and $a^2 + \mu$ are positive, but $b^2 + \mu$ is negative. Calling ρ , σ the distances of the point x, y from the points (c, 0) and (-c, 0), that is, assuming

$$\begin{split} \rho &= \sqrt{\{(x-c)^2 + y^2\}}, \\ \sigma &= \sqrt{\{(x+c)^2 + y^2\}}, \end{split}$$

then we have

$$\sqrt{(a^2 + \lambda)} = \frac{1}{2} (\sigma + \rho), \text{ whence also } \sqrt{(b^2 + \lambda)} = \frac{1}{2} \sqrt{\{(\sigma + \rho)^2 - 4c^2\}}, \\ \sqrt{(a^2 + \mu)} = \frac{1}{2} (\sigma - \rho), \qquad , \qquad \sqrt{(b^2 + \mu)} = \frac{1}{2} \sqrt{\{(\sigma - \rho)^2 - 4c^2\}},$$

which equations determine λ , μ as functions of x, y.

Now we have

$$\rho\sigma = \sqrt{\{(x^2 + y^2 - c^2)^2 - 4c^2x^2\}} = \sqrt{\{(x^2 - y^2 - c^2)^2 + 4x^2y^2\}},$$

$$\mu^2 + \sigma^2 = 2(x^2 + y^2 + c^2);$$

substituting herein for x, y their values

 $c\sin\xi\cos i\eta$, $-ci\cos\xi\sin i\eta$,

we find

$$x^{2} - y^{2} - c^{2} = c^{2} \left\{ \sin^{2} \xi \cos^{2} i\eta + \cos^{2} \xi \sin^{2} i\eta - (\sin^{2} \xi + \cos^{2} \xi) (\sin^{2} i\eta + \cos^{2} i\eta) \right\}$$

whence

$(x^2 - y^2 - c^2)^2 =$	$c^4 (\cos^2 \xi \cos^2 i\eta + \sin^2 \xi \sin^2 i\eta)^2$
$+ 4x^2y^2$	$-4c^4\sin^2\xi\cos^2\xi\sin^2i\eta\cos^2i\eta$
=	$c^4 \left(\cos^2\xi\cos^2i\eta-\sin^2\xi\sin^2i\eta\right)^2.$

	$2 ho\sigma$	$= 2c^{2}$	$(\cos^2 \xi)$	$\cos^2 i\eta$	$-\sin^2$	$\xi \sin^2 i\eta),$	
--	--------------	------------	----------------	----------------	-----------	----------------------	--

 $= -c^2 \left(\sin^2 \xi \sin^2 i\eta + \cos^2 \xi \cos^2 i\eta \right),$

$$ho^2 + \sigma^2 = 2c^2 \left(\sin^2 \xi \cos^2 i\eta - \cos^2 \xi \sin^2 i\eta + 1 \right);$$

hence

Hence

and

$$(\rho + \sigma)^2 = 2c^2 (\cos^2 i\eta - \sin^2 i\eta + 1), = 4c^2 \cos^2 i\eta, (\rho - \sigma)^2 = 2c^2 (\sin^2 \xi - \cos^2 \xi + 1), = 4c^2 \sin^2 \xi.$$

Consequently

 $a^{2} + \lambda = c^{2} \cos^{2} i\eta$, and thence $b^{2} + \lambda = -c^{2} \sin^{2} i\eta$, $a^{2} + \mu = c^{2} \sin^{2} \xi$, , $b^{2} + \mu = -c^{2} \cos^{2} \xi$,

values which verify as they should do the equations

$\frac{x^2}{a^2+\lambda}$	$+\frac{y^2}{b^2+\lambda}=1,$
	$+\frac{y^2}{b^2+\mu}=1,$

37 - 2

www.rcin.org.pl

683]

viz. these become

$$\frac{x^2}{c^2 \cos^2 i\eta} + \frac{y^2}{-c^2 \sin^2 i\eta} = \sin^2 \xi + \cos^2 \xi, = 1,$$
$$\frac{x^2}{c^2 \sin^2 \xi} + \frac{y^2}{-c^2 \cos^2 \xi} = \cos^2 i\eta + \sin^2 i\eta, = 1.$$

The same equations, or as we may also write them,

$$\begin{split} \lambda &= -a^2 \sin^2 i\eta - b^2 \cos^2 i\eta, \\ \mu &= -a^2 \cos^2 \xi - b^2 \sin^2 \xi, \end{split}$$

determine η as a function of λ , and ξ as a function of μ ; λ , μ being by what precedes, given functions of x, y.

Or more simply, starting from the last-mentioned values of λ , μ , and substituting these in the expressions

$$x^2 = rac{a^2 + \lambda \cdot a^2 + \mu}{a^2 - b^2}, \quad y^2 = rac{b^2 + \lambda \cdot b^2 + \mu}{b^2 - a^2},$$

we find

 $x^2 = c^2 \sin^2 \xi \cos^2 i\eta, \quad y^2 = -c^2 \cos^2 \xi \sin^2 i\eta,$

or say

 $x = c \sin \xi \cos i\eta, \quad iy = c \cos \xi \sin i\eta,$

whence

 $x + iy = c\sin\left(\xi + i\eta\right),$

the original relation between x, y and ξ , η .

292

[683