683.

ON THE FUNCTION arc sin $(x+i y)$.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xv. (1878), pp. 171-174.]

The determination of the function in question, the are to a given imaginary sine, is considered in Cauchy's Exercises d'Analyse, \&c., t. III. (1844), p. 382; but it appears, by two hydrodynamical papers by Mr Ferrers and Mr Lamb, Quarterly Mathematical Journal, t. XIII. (1874), p. 115, and t. xIv. (1875), p. 40, that the question is connected with the theory of confocal conics.

Taking $c=\sqrt{ }\left(a^{2}-b^{2}\right)$ a positive real quantity which may ultimately be put $=1$, the question is to find the real quantities ξ, η, such chat

$$
\xi+i \eta=\arcsin \frac{1}{c}(x+i y)
$$

or say

$$
x+i y=c \sin (\xi+i \eta)
$$

so that

$$
x=c \sin \xi \cos i \eta, \quad i y=c \cos \xi \sin i \eta .
$$

It is convenient to remark that if a value of $\xi+i \eta$ be $\xi^{\prime}+i \eta^{\prime}$, then the general value is $2 m \pi+\xi^{\prime}+i \eta^{\prime}$ or $(2 m+1) \pi-\left(\xi^{\prime}+i \eta^{\prime}\right)$; hence, η may be made positive or negative at pleasure; $\cos i \eta$ is in each case positive, but $\frac{1}{i} \sin i \eta$ has the same sign as η; hence $\cos \xi$ has the same sign as x, but $\sin \xi$ has the same sign as y or the reverse sign, according as η is positive or negative; for any given values of x and y, we obtain, as will appear, determinate positive values of $\sin ^{2} \xi$ and $\cos ^{2} \xi$; and the square roots of these must therefore be taken so as to give to $\sin \xi, \cos \xi$ their proper signs respectively.

Suppose that λ, μ are the elliptic coordinates of the point (x, y); viz. that we have

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}=1, \\
& \frac{x^{2}}{a^{2}+\mu}+\frac{y^{2}}{b^{2}+\mu}=1,
\end{aligned}
$$

where $a^{2}+\lambda, b^{2}+\lambda$, and $a^{2}+\mu$ are positive, but $b^{2}+\mu$ is negative. Calling ρ, σ the distances of the point x, y from the points $(c, 0)$ and $(-c, 0)$, that is, assuming

$$
\begin{aligned}
& \rho=\sqrt{ }\left\{(x-c)^{2}+y^{2}\right\}, \\
& \sigma=\sqrt{ }\left\{(x+c)^{2}+y^{2}\right\},
\end{aligned}
$$

then we have

$$
\begin{array}{lr}
\sqrt{ }\left(a^{2}+\lambda\right)=\frac{1}{2}(\sigma+\rho), & \text { whence also } \sqrt{ }\left(b^{2}+\lambda\right)=\frac{1}{2} \sqrt{ }\left\{(\sigma+\rho)^{2}-4 c^{2}\right\}, \\
\sqrt{ }\left(a^{2}+\mu\right)=\frac{1}{2}(\sigma \sim \rho), \quad \geqslant \quad \sqrt{ }\left(b^{2}+\mu\right)=\frac{1}{2} \sqrt{ }\left\{(\sigma \sim \rho)^{2}-4 c^{2}\right\},
\end{array}
$$

which equations determine λ, μ as functions of x, y.
Now we have

$$
\begin{aligned}
\rho \sigma & =\sqrt{ }\left\{\left(x^{2}+y^{2}-c^{2}\right)^{2}-4 c^{2} x^{2}\right\}=\sqrt{ }\left\{\left(x^{2}-y^{2}-c^{2}\right)^{2}+4 x^{2} y^{2}\right\}, \\
\rho^{2}+\sigma^{2} & =2\left(x^{2}+y^{2}+c^{2}\right)
\end{aligned}
$$

substituting herein for x, y their values
$c \sin \xi \cos i \eta,-c i \cos \xi \sin i \eta$,
we find

$$
\begin{aligned}
x^{2}-y^{2}-c^{2} & =c^{2}\left\{\sin ^{2} \xi \cos ^{2} i \eta+\cos ^{2} \xi \sin ^{2} i \eta-\left(\sin ^{2} \xi+\cos ^{2} \xi\right)\left(\sin ^{2} i \eta+\cos ^{2} i \eta\right)\right\} \\
& =-c^{2}\left(\sin ^{2} \xi \sin ^{2} i \eta+\cos ^{2} \xi \cos ^{2} i \eta\right),
\end{aligned}
$$

whence

$$
\begin{array}{cc}
\left(x^{2}-y^{2}-c^{2}\right)^{2}= & c^{4}\left(\cos ^{2} \xi \cos ^{2} i \eta+\sin ^{2} \xi \sin ^{2} i \eta\right)^{2} \\
+4 x^{2} y^{2} & -4 c^{4} \sin ^{2} \xi \cos ^{2} \xi \sin ^{2} i \eta \cos ^{2} i \eta
\end{array}
$$

Hence

$$
=c^{4}\left(\cos ^{2} \xi \cos ^{2} i \eta-\sin ^{2} \xi \sin ^{2} i \eta\right)^{2}
$$

$$
2 \rho \sigma=2 c^{2}\left(\cos ^{2} \xi \cos ^{2} i \eta-\sin ^{2} \xi \sin ^{2} i \eta\right),
$$

and

$$
\rho^{2}+\sigma^{2}=2 c^{2}\left(\sin ^{2} \xi \cos ^{2} i \eta-\cos ^{2} \xi \sin ^{2} i \eta+1\right)
$$

hence

$$
\begin{aligned}
& (\rho+\sigma)^{2}=2 c^{2}\left(\cos ^{2} i \eta-\sin ^{2} i \eta+1\right),=4 c^{2} \cos ^{2} i \eta \\
& (\rho-\sigma)^{2}=2 c^{2}\left(\sin ^{2} \xi-\cos ^{2} \xi+1\right),=4 c^{2} \sin ^{2} \xi
\end{aligned}
$$

Consequently

$$
\begin{aligned}
& a^{2}+\lambda=c^{2} \cos ^{2} i \eta, \text { and thence } b^{2}+\lambda=-c^{2} \sin ^{2} i \eta, \\
& a^{2}+\mu=c^{2} \sin ^{2} \xi, \quad „ \quad b^{2}+\mu=-c^{2} \cos ^{2} \xi,
\end{aligned}
$$

values which verify as they should do the equations

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}=1 \\
& \frac{x^{2}}{a^{2}+\mu}+\frac{y^{2}}{b^{2}+\mu}=1
\end{aligned}
$$

viz. these become

$$
\begin{aligned}
& \frac{x^{2}}{c^{2} \cos ^{2} i \eta}+\frac{y^{2}}{-c^{2} \sin ^{2} i \eta}=\sin ^{2} \xi+\cos ^{2} \xi,=1 \\
& \frac{x^{2}}{c^{2} \sin ^{2} \xi}+\frac{y^{2}}{-c^{2} \cos ^{2} \xi}=\cos ^{2} i \eta+\sin ^{2} i \eta,=1
\end{aligned}
$$

The same equations, or as we may also write them,

$$
\begin{aligned}
& \lambda=-a^{2} \sin ^{2} i \eta-b^{2} \cos ^{2} i \eta \\
& \mu=-a^{2} \cos ^{2} \xi-b^{2} \sin ^{2} \xi
\end{aligned}
$$

determine η as a function of λ, and ξ as a function of $\mu ; \lambda, \mu$ being by what precedes, given functions of x, y.

Or more simply, starting from the last-mentioned values of λ, μ, and substituting these in the expressions

$$
x^{2}=\frac{a^{2}+\lambda \cdot a^{2}+\mu}{a^{2}-b^{2}}, \quad y^{2}=\frac{b^{2}+\lambda \cdot b^{2}+\mu}{b^{2}-a^{2}}
$$

we find

$$
x^{2}=c^{2} \sin ^{2} \xi \cos ^{2} i \eta, \quad y^{2}=-c^{2} \cos ^{2} \xi \sin ^{2} i \eta
$$

or say

$$
x=c \sin \xi \cos i \eta, \quad i y=c \cos \xi \sin i \eta
$$

whence

$$
x+i y=c \sin (\xi+i \eta)
$$

the original relation between x, y and ξ, η.

