686.

ON A FUNCTIONAL EQUATION.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xv. (1878), pp. 315325 ; Proceedings of the London Mathematical Society, vol. Ix. (1878), p. 29.]

I was led by a hydrodynamical problem to consider a certain functional equation; viz. writing for shortness $x_{1}=\frac{a x+b}{c x+d}$, this is

$$
\phi x-\phi x_{1}=\left(x-x_{1}\right) \frac{A x+B}{C x+D}
$$

I find by a direct process, which I will afterwards explain, the solution

$$
\phi x=\frac{A}{C} x+\frac{\sqrt{ }\left\{(a-d)^{2}+4 b c\right\}(A D-B C)}{C(d C-c D)} \int_{0}^{\infty} \frac{\sin \xi t \sin \eta t d t}{\sin \xi t \sinh \pi t}
$$

where ζ is a constant, but ξ, η are complicated logarithmic functions of $x(\xi, \eta, \zeta$ depend also on the quantities $a, b, c, d, C, D) ; \sinh \pi t$ denotes as usual the hyperbolic sine, $\frac{1}{2}\left(e^{\pi t}-e^{-\pi t}\right)$.

The values of ξ, η, ζ are given by the formulæ

$$
\begin{gathered}
\lambda+\frac{1}{\lambda}=\frac{a^{2}+d^{2}+2 b c}{a d-b c}, \\
a=a x+b, \quad \mathrm{~b}=-d x+b, \\
\mathrm{c}=c x+d, \quad \mathrm{~d}=\quad c x-a, \\
W=C \mathrm{a}+D \mathrm{c}, \\
Z=C \mathrm{~b}+D \mathrm{~d}, \\
R=\lambda \mathrm{c}+\lambda \mathrm{d}, \\
S=-\mathrm{c}-\mathrm{d}, \\
R^{\prime}=W+\frac{1}{\lambda} Z, \\
S^{\prime}=-W-\lambda Z,
\end{gathered}
$$

which determine $\lambda, R, S, R^{\prime}, S^{\prime}$ and then

$$
\xi=\frac{1}{2} \log \frac{R S^{\prime}}{R^{\prime} S^{\prime}} \quad \quad \eta=\frac{1}{2}\left(\log \lambda+\log \frac{R R^{\prime}}{S S^{\prime}}\right), \quad \zeta=\frac{1}{2} \log \lambda
$$

There is some difficulty as to the definite integral, on account of the denominator factor $\sin \zeta t$, which becomes $=0$ for the series of values $t=\frac{m \pi}{\zeta}$, but this is a point which I do not enter into.

I will in the first instance verify the result. Writing x_{1} in place of x, and taking ξ_{1}, η_{1} to denote the corresponding values of ξ, η, it will be shown that

$$
\xi_{1}=\xi, \quad \eta_{1}=\eta+2 \zeta,
$$

see post, (1).

Hence in the difference $\phi x-\phi x_{1}$ we have the integral

$$
\int \frac{\sin \xi t\{\sin \eta t-\sin (\eta+2 \zeta) t\} d t}{\sin \zeta t \sinh \pi t}
$$

(where and in all that follows the limits are $\infty, 0$ as before); here, since

$$
\sin \eta t-\sin (\eta+2 \zeta) t=-2 \sin \zeta t \cos (\eta+\zeta) t,
$$

the factor $\sin \zeta t$ divides out, and the numerator is
which is

$$
\begin{aligned}
& =-2 \sin \xi t \cos (\eta+\zeta) t \\
& =\sin (\eta+\zeta-\xi) t-\sin (\eta+\zeta+\xi) t
\end{aligned}
$$

Hence the integral in question is

$$
=\int \frac{\sin (\eta+\zeta-\xi) t d t}{\sinh \pi t}-\int \frac{\sin (\eta+\zeta+\xi) t d t}{\sinh \pi t} .
$$

Now we have in general

$$
\frac{1}{1+\exp \cdot \alpha}=\frac{1}{2}-\int \frac{\sin \alpha t d t}{\sinh \pi t}
$$

(this is, in fact, Poisson's formula

$$
-\frac{1}{1+k \beta^{2 n}}=\frac{1}{2}-2 \int \frac{\sin (2 n \log \beta+\log k) t \cdot d t}{e^{\pi t}-e^{-\pi t}}
$$

in the second Memoir on the distribution of Electricity, \&c., Mém. de l'Inst., 1811, p. 223); and hence the value is

$$
-\frac{1}{1+\exp \cdot(\eta+\zeta-\xi)}+\frac{1}{1+\exp \cdot(\eta+\zeta+\xi)}
$$

or since

$$
\eta+\zeta=\log \lambda+\frac{1}{2} \log \frac{R R^{\prime}}{S S^{\prime \prime}}, \quad \xi=\frac{1}{2} \log \frac{R S^{\prime}}{R^{\prime} S^{\prime}}
$$

we have

$$
\begin{align*}
& \eta+\zeta-\xi=\log \lambda+\frac{1}{2} \log \frac{R^{\prime 2}}{S^{\prime 2}}=\log \lambda \frac{R^{\prime}}{S^{\prime \prime}} \\
& \eta+\zeta+\xi=\log \lambda+\frac{1}{2} \log \frac{R^{2}}{S^{2}}=\log \lambda \frac{R}{S}
\end{align*}
$$

and the value is thus

$$
=-\frac{1}{1+\lambda \frac{R^{\prime}}{S^{\prime}}}+\frac{1}{1+\lambda \frac{R}{S}}, \quad=-\frac{\left(R S^{\prime}-R^{\prime} S\right) \lambda}{\left(\lambda R^{\prime}+S^{\prime}\right)(\lambda R+S)}
$$

Hence, from the assumed value of ϕx, we obtain

$$
\phi x-\phi x_{1}=\frac{A}{C}\left(x-x_{1}\right)-\frac{\sqrt{ }\left\{(a-d)^{2}+4 b c\right\}(A D-B C)\left(R S^{\prime}-R^{\prime} S\right) \lambda}{C(d C-c D)\left(\lambda R^{\prime}+S^{\prime \prime}\right)(\lambda R+S)} .
$$

We have

$$
\begin{array}{ll}
R S^{\prime}-R^{\prime} S & =\frac{(\lambda-1)(a+d)^{2}}{a d-b c}(d C-c D)\left\{c x^{2}+(d-a) x-b\right\} \\
R \lambda+S & =\left(\lambda^{2}-1\right)(c x+d) \\
R^{\prime} \lambda+S^{\prime} & =(\lambda-1)(a+d)(C x+D)
\end{array} \quad \text { see post, (2) }, ~ l
$$

or since

$$
\frac{c x^{2}+(d-a) x-b}{c x+d}=x-x_{1}
$$

this is

$$
\phi x-\phi x_{1}=\frac{A}{C}\left(x-x_{1}\right)-\frac{\sqrt{ }\left\{(a-d)^{2}+4 b c\right\}(A D-B C)}{C} \frac{(a+d) \lambda}{(a d-b c)\left(\lambda^{2}-1\right)(C x+D)}\left(x-x_{1}\right) .
$$

But from the value of λ,

$$
\frac{\lambda}{\lambda^{2}-1}=\frac{a d-b c}{(a+d) \sqrt{\left\{(a-d)^{2}+4 b c\right\}}},
$$

and the equation thus is

$$
\phi x-\phi x_{1}=\left(x-x_{1}\right)\left\{\frac{A}{C}-\frac{A D-B C}{C(C x+D)}\right\},=\left(x-x_{1}\right) \frac{A x+B}{C x+D}
$$

as it should be.
(1) For the foregoing values of ξ_{1}, η_{1}, we require $R_{1}, S_{1}, R_{1}^{\prime}, S_{1}^{\prime}$, the values which $R, S, R^{\prime}, S^{\prime \prime}$ assume on writing therein x_{1} for x. We have

$$
\begin{aligned}
& R_{1}=\lambda\left(c x_{1}+d\right)+\left(c x_{1}-a\right) \\
& S_{1}=-\left(c x_{1}+d\right)-\lambda\left(c x_{1}-a\right):
\end{aligned}
$$

substituting for x_{1} its value, we find

$$
R_{1}(c x+d)=(a+d) \lambda(c x+d)-(a d-b c)(\lambda+1)
$$

or writing herein

$$
a d-b c=\frac{(a+d)^{2} \lambda}{(\lambda+1)^{2}}
$$

this is

$$
R_{1}(c x+d)=\frac{(a+d) \lambda}{\lambda+1} R
$$

and similarly

$$
S_{1}(c x+d)=\frac{a+d}{\lambda+1} S
$$

We have in like manner

$$
\begin{aligned}
& R_{1}^{\prime}=W_{1}+\frac{1}{\lambda} Z_{1}, \text { where } W_{1}=C\left(a x_{1}+b\right)+D\left(c x_{1}+d\right), \\
& S_{1}^{\prime}=-W_{1}-\lambda Z_{1}, \text { where } Z_{1}=C\left(-d x_{1}+b\right)+D\left(c x_{1}-a\right) .
\end{aligned}
$$

Substituting for x_{1} its value, we find

$$
\begin{aligned}
& W_{1}(c x+d)=C[(a+d)(a x+b)-(a d-b c) x]+D[(a+d)(c x+d)-(a d-b c)], \\
& Z_{1}(c x+d)=C[\quad-(a d-b c) x]+D[\quad-(a d-b c)]:
\end{aligned}
$$

hence, substituting for $a d-b c$ as before,

$$
\begin{aligned}
& W_{1}(c x+d)=\frac{a+d}{(\lambda+1)^{2}}\left\{(\lambda+1)^{2} W-(a+d) \lambda(C x+D)\right\}, \\
& Z_{1}(c x+d)=\frac{a+d}{(\lambda+1)^{2}}\{\quad-(a+d) \lambda(C x+D)\},
\end{aligned}
$$

whence without difficulty

$$
\begin{aligned}
& R_{1}^{\prime}(c x+d)=\frac{(a+d) \lambda}{\lambda+1} R^{\prime}, \\
& S_{1}^{\prime}(c x+d)=\frac{a+d}{\lambda+1} S^{\prime}:
\end{aligned}
$$

consequently

$$
\begin{aligned}
& \frac{R_{1} S_{1}^{\prime}}{R_{1}^{\prime} S_{1}^{\prime}}=\frac{R S^{\prime \prime}}{R^{\prime} S^{\prime}}, \text { that is, } \xi_{1}=\xi \\
& \frac{R_{1} R_{1}^{\prime}}{S_{1} S_{1}^{\prime}}=\lambda^{2} \frac{R R^{\prime}}{S S^{\prime}}, \quad " \quad, \quad \eta_{1}=\log \lambda+\eta,=2 \zeta+\eta
\end{aligned}
$$

which are the formulæ in question.
(2) For the value of $R S^{\prime}-R^{\prime} S$, we have

$$
\begin{aligned}
R S^{\prime}-R^{\prime} S & =(\lambda \mathrm{c}+\mathrm{d})(-W-\lambda Z)-(-\lambda \mathrm{d}-\mathrm{c})\left(W+\frac{Z}{\lambda}\right) \\
& =\left(-\lambda^{2}+\frac{1}{\lambda}\right) \mathrm{c} Z+(\lambda+1)\{(\mathrm{d}-\mathrm{c}) W-\mathrm{d} R\} \\
& =-(\lambda-1)\left\{\left(1+\lambda+\frac{1}{\lambda}\right) \mathrm{c} Z+(\mathrm{c}-\mathrm{d}) W+\mathrm{d} Z\right\}
\end{aligned}
$$

or substituting for $\lambda+\frac{1}{\lambda}, Z$ and W their values, this is

$$
\begin{aligned}
=\frac{-(\lambda-1)}{a d-b c}\left\{\left(a^{2}+d^{2}\right.\right. & +a d+b c) \mathrm{c}(\mathrm{~b} C+\mathrm{d} D) \\
& \quad+(a d-b c)[(\mathrm{c}-\mathrm{d})(\mathrm{a} C+\mathrm{c} D)+\mathrm{d}(\mathrm{~b} C+\mathrm{d} D)]\} .
\end{aligned}
$$

In the term in \{ \}, the coefficient of C is

$$
\begin{aligned}
& {\left[\left(a^{2}+d^{2}+a d+b c\right) \mathrm{b}+(a d-b c) \mathrm{a}\right] \mathrm{c}-\mathrm{d}(\mathrm{a}-\mathrm{b})(a d-b c)} \\
& =(a+d)(d \mathrm{~b}-b \mathrm{~d}) \mathrm{c}-(a+d) \mathrm{d} x(a d-b c)
\end{aligned}
$$

and similarly the coefficient of D is

$$
\begin{aligned}
& {\left[\left(a^{2}+d^{2}+a d+b c\right) \mathrm{d}+(a d-b c) \mathrm{c}\right] \mathrm{c}-\mathrm{d}(\mathrm{c}-\mathrm{d})(a d-b c)} \\
& =(a+d)(a \mathrm{~d}-c b) \mathrm{c}-(a+d) \mathrm{d}(a d-b c)
\end{aligned}
$$

Hence the whole term in $\}$ is

$$
=(a+d)\{[(d \mathrm{~b}-b \mathrm{~d}) \mathrm{c}-\mathrm{d}(a d-b c) x] C+[(a \mathrm{~d}-c \mathrm{~b}) \mathrm{c}-\mathrm{d}(a d-b c)] D\}
$$

which is readily reduced to

$$
(a+d)(\mathrm{ad}-\mathrm{bc})(-d C+c D)
$$

also

$$
\mathrm{ad}-\mathrm{bc}=(a+d)\left\{c x^{2}+(d-a) x-b\right\} ;
$$

so that we have

$$
R S^{\prime \prime}-R^{\prime} S=\frac{(\lambda-1)(a+d)^{2}}{a d-b c}(d C-c D)\left[c x^{2}+(d-a) x-b\right]
$$

which is the required value of $R S^{\prime}-R^{\prime} S$; and there is no difficulty in obtaining the other two formulæ,

$$
\begin{aligned}
& R \lambda+S=\left(\lambda^{2}-1\right)(c x+d) \\
& R^{\prime} \lambda+S^{\prime \prime}=(\lambda-1)(a+d)(C x+D)
\end{aligned}
$$

the verification is thus completed.
To show how the formula was directly obtained, we have

$$
\begin{aligned}
\frac{A x+B}{C x+D} & =\frac{A}{C}-\frac{A D-B C}{C} \frac{1}{C x+D} \\
& =\frac{A}{C}+\beta x \text { suppose }
\end{aligned}
$$

the equation then is

$$
\phi x-\phi x_{1}=\frac{A}{C}\left(x-x_{1}\right)+\left(x-x_{1}\right) \beta x .
$$

Hence, if $x_{1}, x_{2}, x_{3}, \ldots$ denote the successive functiors $9 x, 9^{2} x, 9^{3} x$, \&c., we have

$$
\begin{aligned}
& \phi x_{1}-\phi x_{2}=\frac{A}{C}\left(x_{1}-x_{2}\right)+\left(x_{1}-x_{2}\right) \beta x_{1} \\
& \phi x_{2}-\phi x_{3}=\frac{A}{C}\left(x_{2}-x_{3}\right)+\left(x_{2}-x_{3}\right) \beta x_{2}
\end{aligned}
$$

whence adding, and neglecting ϕx_{∞} and x_{∞}, we have

$$
\phi x=\frac{A}{C} x+\left[\left(x-x_{1}\right) \beta x+\left(x_{1}-x_{2}\right) \beta x_{1}+\left(x_{2}-x_{3}\right) \beta x_{2}+\ldots\right]
$$

where the term in [], regarding therein $x_{1}, x_{2}, x_{3}, \ldots$ as given functions of x, is itself a given function of x; and it only remains to sum the series.

Starting from
and writing

$$
x_{1}=9 x=\frac{a x+b}{c x+d}
$$

$$
\lambda+\frac{1}{\lambda}=\frac{a^{2}+d^{2}+2 b c}{a d-b c}
$$

then the nth function is given by the formula

$$
\begin{aligned}
x_{n}=9_{n} x & =\frac{\left(\lambda^{n+1}-1\right)(a x+b)+\left(\lambda^{n}-\lambda\right)(-d x+b)}{\left(\lambda^{n+1}-1\right)(c x+d)+\left(\lambda^{n}-\lambda\right)(c x-a)} \\
& =\frac{\left(\lambda^{n+1}-1\right) a+\left(\lambda^{n}-\lambda\right) b}{\left(\lambda^{n+1}-1\right) c+\left(\lambda^{n}-\lambda\right) d} \\
& =\frac{\lambda^{n} P+Q}{\lambda^{n} R+S^{\prime}}
\end{aligned}
$$

if $P=\lambda \mathrm{a}+\mathrm{b}, Q=-\mathrm{a}-\lambda \mathrm{b}$, and as before $R=\lambda \mathrm{c}+\mathrm{d}, S=-\mathrm{c}-\lambda \mathrm{d}$.
I stop to remark that λ being real, then if $\lambda>1$ we have λ^{n} very large for n very large, and $x^{n}=\frac{P}{R}$ which is independent of n; the value in question is

$$
x_{n}=\frac{\lambda(a x+b)+(-d x+b)}{\lambda(c x+d)+(c x-a)}
$$

which, observing that the equation in λ may be written

$$
\frac{\lambda a-d}{c(\lambda+1)}=\frac{b(\lambda+1)}{\lambda d-a}
$$

is, in fact, independent of x, and is $=\frac{\lambda a-d}{c(\lambda+1)}$ or $\frac{b(\lambda+1)}{\lambda d-a}$; we have $x_{n-1}=x_{n}$, or calling each of these two equal values x, we have

$$
x=\frac{a x+b}{c x+d}
$$

which is the same equation as is obtainable by the elimination of λ from the equations

$$
x=\frac{\lambda a-d}{c(\lambda+1)}=\frac{b(\lambda+1)}{\lambda d-a} .
$$

The same result is obtained by taking $\lambda<1$ and consequently $x_{n}=\frac{Q}{S}$.
We find

$$
\begin{aligned}
x_{n-1}-x_{n} & =\frac{\lambda^{n-1} P+Q}{\lambda^{n-1} R+S}-\frac{\lambda^{n} P+Q}{\lambda^{n} R+S}, \\
& =\frac{-\lambda^{n-1}(\lambda-1)(P S-Q R)}{\left(\lambda^{n-1} R+S\right)\left(\lambda^{n} R+S\right)},
\end{aligned}
$$

where

$$
P S-Q R=-\left(\lambda^{2}-1\right)(\mathrm{ad}-\mathrm{bc})=-\left(\lambda^{2}-1\right)(a+d)\left\{c x^{2}+(d-a) x-b\right\} ;
$$

and therefore

$$
x_{n-1}-x_{n}=\frac{(\lambda-1)\left(\lambda^{2}-1\right)(a+d)\left\{c x^{2}+(d-a) x-b\right\} \lambda^{n}}{\lambda\left(\lambda^{n-1} R+S\right)\left(\lambda^{n} R+S\right)}
$$

Also

$$
\beta x_{n-1}=-\frac{A D-B C}{C} \frac{1}{C x_{n-1}+D}
$$

where

$$
C x_{n-1}+D=\frac{C\left(\lambda^{n-1} P+Q\right)+D\left(\lambda^{n-1} R+S\right)}{\lambda^{n-1} R+S}=\frac{R^{\prime} \lambda^{n}+S^{\prime}}{R \lambda^{n-1}+S}
$$

where

$$
\begin{aligned}
& R^{\prime}=\frac{C P}{\lambda}+\frac{D R}{\lambda},=C\left(\mathrm{a}+\frac{\mathrm{b}}{\lambda}\right)+D\left(\mathrm{c}+\frac{\mathrm{d}}{\lambda}\right) \\
& S^{\prime}=C Q+D S,=C(-\mathrm{a}-\mathrm{b} \lambda)+D(-\mathrm{c}-\mathrm{d} \lambda)
\end{aligned}
$$

viz.

$$
R^{\prime}=W+\frac{1}{\lambda} Z, \quad S^{\prime}=-W-\lambda Z
$$

where Z and W denote $\mathrm{a} C+\mathrm{c} D$ and $\mathrm{b} C+\mathrm{d} D$ as before.
We hence obtain

$$
\begin{aligned}
\left(x_{n-1}-x_{n}\right) \beta x_{n}= & \frac{-(A D-B C)}{C} \\
& \times \frac{(\lambda-1)\left(\lambda^{2}-1\right)(a+d)\left\{c x^{2}+(d-a) x-b\right\}}{\lambda} \frac{\lambda^{n}}{\left(R \lambda^{n}+S\right)\left(R^{\prime} \lambda^{n}+S^{\prime}\right)} \\
= & \frac{-(A D-B C)}{C} \\
& \times \frac{(\lambda-1)\left(\lambda^{2}-1\right)(a+d)\left\{c x^{2}+(d-a) x-b\right\}}{\lambda\left(R S^{\prime}-R^{\prime} S\right)} \frac{\left(R S^{\prime}-R^{\prime} S\right) \lambda^{n}}{\left(R \lambda^{n}+S\right)\left(R^{\prime} \lambda^{n}+S^{\prime}\right)},
\end{aligned}
$$

or, substituting for $R S^{\prime}-R^{\prime} S$ its value in the denominator, this is

$$
\begin{aligned}
\left(x_{n-1}-x_{n}\right) \beta x_{n} & =-\frac{A D-B C}{C} \frac{(a d-b c)\left(\lambda^{2}-1\right)}{(a+d) \lambda(c D-d C)} \frac{\left(R S^{\prime}-R^{\prime} S\right) \lambda^{n}}{\left(R \lambda^{n}+S\right)\left(R^{\prime} \lambda^{n}+S^{\prime}\right)} \\
& =-\frac{\sqrt{ }\left\{(a-d)^{2}+4 b c\right\}(A D-B C)}{C(c D-d C)} \frac{\left(R S^{\prime}-R^{\prime} S\right) \lambda^{n}}{\left(R \lambda^{n}+S\right)\left(R^{\prime} \lambda^{n}+S^{\prime}\right)}
\end{aligned}
$$

and thence

$$
\phi x=\frac{A}{C} x-\frac{\sqrt{ }\left\{(a-d)^{2}+4 b c\right\}(A D-B C)}{C(c D-d C)} \Sigma \frac{\left(R S^{\prime}-R^{\prime} S\right) \lambda^{n}}{\left(R \lambda^{n}+S\right)\left(R^{\prime} \lambda^{n}+S^{\prime}\right)},
$$

the summation extending from 1 to ∞.
Now the before-mentioned integral formula gives

$$
\begin{aligned}
& \frac{1}{1+k \lambda^{n}}=\frac{1}{2}-\int \frac{\sin (n \log \lambda+\log k) t d t}{\sinh \pi t} \\
& \frac{1}{1+k^{\prime} \lambda^{n}}=\frac{1}{2}-\int \frac{\sin \left(n \log \lambda+\log k^{\prime}\right) t d t}{\sinh \pi t}
\end{aligned}
$$

Taking the difference, and then writing $k=\frac{R}{S}, k^{\prime}=\frac{R^{\prime}}{S^{\prime}}$, we have under the integral sign

$$
\sin \left(n \log \lambda+\log \frac{R}{S}\right) t-\sin \left(n \log \lambda+\log \frac{R^{\prime}}{S^{\prime \prime}}\right) t
$$

which is

$$
=2 \sin \frac{1}{2}\left(\log \frac{R S^{\prime}}{R^{\prime} S}\right) t \cos \left(n \log \lambda+\frac{1}{2} \log \frac{R R^{\prime}}{S S^{\prime}}\right) t
$$

which attending to the before-mentioned values of ξ, η, ζ is
and the formula thus is

$$
\frac{S}{R \lambda^{n}+S}-\frac{S^{\prime}}{R^{\prime} \lambda^{n}+S^{\prime \prime}},=-\frac{\left(R S^{\prime}-R^{\prime} S\right) \lambda^{n}}{\left(R \lambda^{n}+S\right)\left(R^{\prime} \lambda^{n}+S^{\prime}\right)}=-\int \frac{2 \sin \xi t \cos (2 n \zeta-\zeta+\eta) t d t}{\sinh \pi t}
$$

We have here

$$
\cos (2 n \zeta-\zeta+\eta) t=\cos 2 n \zeta t \cos (\eta-\zeta) t-\sin 2 n \zeta t \sin (\eta-\zeta) t
$$

whence summing from 1 to ∞ by means of the formulæ

$$
\begin{aligned}
& \cos 2 \zeta t+\cos 4 \zeta t+\ldots=-\frac{1}{2} \\
& \sin 2 \zeta t+\sin 4 \zeta t+\ldots=\frac{1}{2} \cot \zeta t
\end{aligned}
$$

(which series however are not convergent), the numerator under the integral sign becomes

$$
\sin \xi t\{-\cos (\eta-\zeta) t-\cot \zeta t \sin (\eta-\zeta) t\}
$$

which is

$$
=-\frac{\sin \xi t \sin \eta t}{\sin \zeta t}
$$

and the formula thus is

$$
\Sigma \frac{\left(R S^{\prime}-R^{\prime} S\right) \lambda^{n}}{\left(R \lambda^{n}+S\right)\left(R^{\prime} \lambda^{n}+S^{\prime}\right)}=-\int \frac{\sin \xi t \sin \eta t d t}{\sin \zeta t \sinh \pi t}
$$

and we therefore find

$$
\phi x=\frac{A}{C} x+\frac{\sqrt{ }\left\{(a-d)^{2}+4 b c\right\}(A D-B C)}{C(c D-d C)} \int \frac{\sin \xi t \sin \eta t d t}{\sin \zeta t \sinh \pi t}
$$

which is the result in question.
The solution is a particular one; calling it for a moment (ϕx), then, if the general solution be $\phi x=\Phi x+(\phi x)$, it at once appears that we must have $\Phi x-\Phi x_{1}=0$; and as it has been shown that $\frac{R S^{\prime}}{R^{\prime} S}$ is a function of x which remains unaltered by the change of x into x_{1}, this is satisfied by assuming $\Phi x=f\left(\frac{R S^{\prime}}{R^{\prime} S}\right)$, an arbitrary function of $\frac{R S^{\prime \prime}}{R^{\prime} S^{\prime}}$. Hence we may to the foregoing expression of ϕx add this term $f\left(\frac{R S^{\prime}}{R^{\prime} S}\right)$.

Postscript. The new formula
where

$$
\begin{gathered}
9^{n} x=\frac{\left(\lambda^{n+1}-1\right)(a x+b)+\left(\lambda^{n}-\lambda\right)(-d x+b)}{\left(\lambda^{n+1}-1\right)(c x+d)+\left(\lambda^{n}-\lambda\right)(c x-a)} \\
\lambda+\frac{1}{\lambda}=\frac{a^{2}+d^{2}+2 b c}{a d-b c}
\end{gathered}
$$

c. x .
for the nth repetition of $9 x,=\frac{a x+b}{c x+d}$, is a very interesting one. It is to be remembered that, when n is even the numerator and denominator each divide by $\lambda-1$, but when n is odd they each divide by $\lambda^{2}-1$; after such division, then further dividing by a power of λ, they each consist of terms of the form $\lambda^{\alpha}+\frac{1}{\lambda^{\alpha}}$, that is, they are each of them a rational function of $\lambda+\frac{1}{\lambda}$. Substituting and multiplying by the proper power of $a d-b c$, the numerator and denominator become each of them a rational and integral function of a, b, c, d of the order $n+1$ when n is even, but of the order n when n is odd; in the former case, however, the numerator and denominator each divide by $a+d$, so that ultimately, whether n be even or odd, the order is $=n$ as it should be.

For example, when $n=\mathbf{2}$, the value is

$$
\frac{\left(\lambda^{3}-1\right) a+\left(\lambda^{2}-\lambda\right) b}{\left(\lambda^{3}-1\right) c+\left(\lambda^{2}-\lambda\right) d},=\frac{\left(\lambda^{2}+\lambda+1\right) a+\lambda b}{\left(\lambda^{2}+\lambda+1\right) c+\lambda d},=\frac{\left(\lambda+\frac{1}{\lambda}+1\right) a+b}{\left(\lambda+\frac{1}{\lambda}+1\right) c+d}
$$

or, as this may be written,

$$
=\frac{\left(\lambda+\frac{1}{\lambda}+2\right) a-a+b}{\left(\lambda+\frac{1}{\lambda}+2\right) c-c+d}
$$

where, observing that

$$
\lambda+\frac{1}{\lambda}+2=\frac{(a+d)^{2}}{a d-b c}, \quad-a+b=-(a+d) x, \quad-c+d=-(a+d)
$$

the numerator and denominator each divide by $a+d$, and the final value is

$$
=\frac{(a+d)(a x+b)-(a d-b c) x}{(a+d)(c x+d)-(a d-b c)},=\frac{\left(a^{2}+b c\right) x+b(a+d)}{c(a+d) x+b c+d^{2}}
$$

which is the proper value of $9^{2} x$. But, when $n=3$, the value is

$$
\frac{\left(\lambda^{4}-1\right) a+\left(\lambda^{3}-\lambda\right) b}{\left(\lambda^{4}-1\right) c+\left(\lambda^{3}-\lambda\right) d},=\frac{\left(\lambda^{2}+1\right) a+\lambda b}{\left(\lambda^{2}+1\right) c+\lambda d},=\frac{\left(\lambda+\frac{1}{\lambda}\right) a+b}{\left(\lambda+\frac{1}{\lambda}\right) c+d}
$$

and this is

$$
=\frac{\left(a^{2}+d^{2}+2 b c\right)(a x+b)+(a d-b c)(-d x+b)}{\left(a^{2}+d^{2}+2 b c\right)(c x+d)+(a d-b c)(c x-a)}
$$

or finally

$$
=\frac{\left(a^{3}+2 a b c+b c d\right) x+b\left(a^{3}+a d+b c+d^{3}\right)}{c\left(a^{2}+a d+b c+d^{2}\right) x+\left(a b c+2 b c d+d^{3}\right)}
$$

which is the proper value of $\beth^{3} x$.

