692.

ADDITION TO THE MEMOIR ON THE TRANSFORMATION OF ELLIPTIC FUNCTIONS.

[From the Philosophical Transactions of the Royal Society of London, vol. clxix. Part II. (1878), pp. 419-424. Received February 6,—Read March 7, 1878.]

I have recently succeeded in completing a theory considered in my "Memoir on the Transformation of Elliptic Functions," Phil. Trans., vol. clxiv. (1874), pp. 397-456, [578], 一that of the septic transformation, $n=7$. We have here

$$
\frac{1-y}{1+y}=\frac{1-x}{1+x}\left(\frac{\alpha-\beta x+\gamma x^{2}-\delta x^{3}}{\alpha+\beta x+\gamma x^{2}+\delta x^{3}}\right)^{2}
$$

a solution of

$$
\frac{M d y}{\sqrt{1-y^{2} \cdot 1-v^{8} y^{2}}}=\frac{d x}{\sqrt{1-x^{2} .1-u^{8} x^{2}}}
$$

where $\frac{1}{M}=1+\frac{2 \beta}{\alpha}$; and the ratios $\alpha: \beta: \gamma: \delta$, and the $u v$-modular, equation are determined by the equations

$$
\begin{aligned}
u^{14} \alpha^{2} & =v^{2} \delta^{2} \\
u^{6}\left(2 \alpha \gamma+2 \alpha \beta+\beta^{2}\right) & =v^{2}\left(\gamma^{2}+2 \gamma \delta+2 \beta \delta\right) \\
\gamma^{2}+2 \beta \gamma+2 \alpha \delta+2 \beta \delta & =v^{2} u^{2}\left(2 \alpha \gamma+2 \beta \gamma+2 \alpha \delta+\beta^{2}\right) \\
\delta^{2}+2 \gamma \delta & =v^{2} u^{10}\left(\alpha^{2}+2 \alpha \beta\right)
\end{aligned}
$$

or, what is the same thing, writing $\alpha=1$, the first equation may be replaced by $\delta=\frac{u^{7}}{v}$, and then, α, δ having these values, the last three equations determine β, γ and the modular equation. If instead of β we introduce M, by means of the relation
$\frac{1}{M}=1+2 \beta$, that is, $2 \beta=\frac{1}{M}-1$, then the last equation gives $2 \gamma=u^{3} v^{3}\left(\frac{1}{M}-\frac{u^{4}}{v^{4}}\right)$; and $\alpha, \beta, \gamma, \delta$ having these values, we have the residual two equations

$$
\begin{aligned}
u^{6}\left(2 \alpha \gamma+2 \alpha \beta+\beta^{2}\right) & =v^{2}\left(\gamma^{2}+2 \gamma \delta+2 \beta \delta\right) \\
\gamma^{2}+2 \beta \gamma+2 \alpha \delta+\beta \delta & =v^{2} u^{2}\left(2 \alpha \gamma+2 \beta \gamma+2 \alpha \delta+\beta^{2}\right)
\end{aligned}
$$

viz. each of these is a quadric equation in $\frac{1}{M}$; hence eliminating $\frac{1}{M}$, we have the modular equation; and also (linearly) the value of $\frac{1}{M}$, and thence the values of $\alpha, \beta, \gamma, \delta$ in terms of u, v.

Before going further it is proper to remark that, writing as above $\alpha=1$, then if $\delta=\beta \gamma$, we have

$$
\begin{aligned}
& 1-\beta x+\gamma x^{2}-\delta x^{3}=(1-\beta x)\left(1+\gamma x^{2}\right) \\
& 1+\beta x+\gamma x^{2}+\delta x^{3}=(1+\beta x)\left(1+\gamma x^{2}\right)
\end{aligned}
$$

and the equation of transformation becomes

$$
\frac{1-y}{1+y}=\frac{1-x}{1+x}\left(\frac{1-\beta x}{1+\beta x}\right)^{2}
$$

viz. this belongs to the cubic transformation. The value of β in the cubic transformation was taken to be $\beta=\frac{u^{3}}{v}$, but for the present purpose it is necessary to pay attention to an omitted double sign, and write $\beta= \pm \frac{u^{3}}{v}$; this being so, $\delta=\beta \gamma$, and giving to γ the value $\mp u^{4}, \delta$ will have its foregoing value $=\frac{u^{7}}{v}$. And from the theory of the cubic equation, according as $\beta=\frac{u^{3}}{v}$ or $=-\frac{u^{3}}{v}$, the modular equation must be

$$
u^{4}-v^{4}+2 u v\left(1-u^{2} v^{2}\right)=0, \text { or } u^{4}-v^{4}-2 u v\left(1-u^{2} v^{2}\right)=0 .
$$

We thus see \grave{d} priori, and it is easy to verify that the equations of the septic transformation are satisfied by the values

$$
\begin{aligned}
& \alpha=1, \beta=\frac{u^{3}}{v}, \gamma=u^{4}, \delta=\frac{u^{7}}{v}, \text { and } u^{4}-v^{4}+2 u v\left(1-u^{2} v^{2}\right)=0 \\
& \alpha=1, \beta=-\frac{u^{3}}{v}, \gamma=-u^{4}, \delta=\frac{u^{7}}{v}, \text { and } u^{4}-v^{4}-2 u v\left(1-u^{2} v^{2}\right)=0
\end{aligned}
$$

and it hence follows that in obtaining the modular equation for the septic transformation, we shall meet with the factors $u^{4}-v^{4} \pm 2 u v\left(1-u^{2} v^{2}\right)$. Writing for shortness $u v=\theta$, these factors are $u^{4}-v^{4} \pm 2 \theta\left(1-\theta^{2}\right)$; the factor for the proper modular equation is $u^{8}+v^{8}-\Theta$, where

$$
\Theta=8 \theta-28 \theta^{2}+56 \theta^{3}-70 \theta^{4}+56 \theta^{5}-28 \theta^{6}+8 \theta^{7}
$$

viz. the equation $\left(1-u^{8}\right)\left(1-v^{8}\right)-(1-u v)^{8}=0$ is $u^{8}+v^{8}-\Theta=0$; and the modular equation, as obtained by the elimination from the two quadric equations, presents itself in the form

$$
\left(u^{4}-v^{4}+2 \theta-2 \theta^{3}\right)^{2}\left(u^{4}-v^{4}-2 \theta+2 \theta^{3}\right)^{2}\left(u^{8}+v^{8}-\Theta\right)=0
$$

Proceeding to the investigation, we substitute the values

$$
\alpha=1, \beta=\frac{1}{2}\left(\frac{1}{M}-1\right), \gamma=\frac{1}{2} u^{3} v^{2}\left(\frac{1}{M}-\frac{u^{4}}{v^{4}}\right), \delta=\frac{u^{7}}{v}
$$

in the residual two equations, which thus become

$$
\begin{aligned}
& \frac{1}{M^{2}}\left(1-v^{8}\right)+\frac{2}{M}(1-u v)^{3}(1+u v) \\
&+\left\{\left(1-u^{8}\right)-4(1-u v)\left(1+\frac{u^{7}}{v}\right)\right\}=0 \\
& \frac{1}{M^{2}}\left\{-u^{2} v^{2}(1-u v)^{3}(1+u v)\right\}+\frac{2}{M}\left\{u^{2} v^{2}\left(1-u^{8}\right)+\frac{u^{3}}{v}\left(1+u^{2} v^{2}\right)\left(u^{4}-v^{4}\right)\right\} \\
&+\left\{\frac{u^{14}}{v^{2}}+6 \frac{u^{7}}{v}\left(1-u^{2} v^{2}\right)-u^{2} v^{2}\right\}=0
\end{aligned}
$$

the first of which is given p. 432 of the "Memoir," [Coll. Math. Papers, vol. ix., p. 150]. Calling them

$$
\left(\mathrm{a}, \mathrm{~b}, \mathrm{c} \gamma \frac{1}{M}, 1\right)^{2}=0,\left(\mathrm{a}^{\prime}, \mathrm{b}^{\prime}, \mathrm{c}^{\prime} \backslash \frac{1}{M}, 1\right)^{2}=0
$$

we have

$$
\frac{1}{M^{2}}: \frac{2}{M}: 1=b c^{\prime}-b^{\prime} c: c a^{\prime}-c^{\prime} a: a b^{\prime}-a^{\prime} b
$$

and the result of the elimination therefore is

$$
\left(c a^{\prime}-c^{\prime} a\right)^{2}-4\left(b c^{\prime}-b^{\prime} c\right)\left(a b^{\prime}-a^{\prime} b\right)=0
$$

Write as before $u v=\theta$. In forming the expressions $c a^{\prime}-c^{\prime} a, \& c .$, to avoid fractions we must in the first instance introduce the factor v^{2} : thus

$$
\begin{aligned}
v^{2}\left(\mathrm{ca}^{\prime}-\mathrm{c}^{\prime} \mathrm{a}\right)= & v\left\{v\left(1-u^{8}\right)-4(1-\theta)\left(v+u^{7}\right)\right\}\left\{-\theta^{2}(1+\theta)(1-\theta)^{3}\right\} \\
& -\left\{u^{14}+6 u^{6} \theta\left(1-\theta^{2}\right)-v^{2} \theta^{2}\right\}\left\{1-v^{8}\right\} \\
= & -\theta^{2}(1+\theta)(1-\theta)^{3}\left\{v^{2}(-3+4 \theta)+u^{6}\left(-4 \theta+3 \theta^{2}\right)\right\} \\
& -\left\{u^{14}+6 u^{6}\left(\theta-\theta^{3}\right)-v^{2} \theta^{2}\right\}\left(1-v^{8}\right)
\end{aligned}
$$

but instead of $\theta^{2} v^{2}$ writing $u^{2} v^{4}$, the expression on the right-hand side becomes divisible by u^{2}; and we find

$$
\begin{aligned}
\frac{v^{2}}{u^{2}}\left(c a^{\prime}-c^{\prime} a\right)= & -(1+\theta)(1-\theta)^{3}\left\{v^{4}(-3+4 \theta)+u^{4}\left(-4 \theta^{3}+3 \theta^{4}\right)\right\} \\
& -\left\{u^{12}+6 u^{4}\left(\theta-\theta^{3}\right)-v^{4}\right\}\left(1-v^{8}\right)
\end{aligned}
$$

and thence

$$
-\frac{v^{2}}{u^{2}}\left(\mathrm{ca}^{\prime}-\mathrm{c}^{\prime} \mathrm{a}\right)=u^{12}+u^{4}\left(6 \theta-10 \theta^{3}+11 \theta^{4}-6 \theta^{5}-8 \theta^{6}+10 \theta^{7}-4 \theta^{8}\right)
$$

$$
+v^{4}\left(-4+10 \theta-8 \theta^{2}-6 \theta^{3}+11 \theta^{4}-10 \theta^{5}+6 \theta^{7}\right)+v^{12}
$$

Similarly we have

$$
\begin{aligned}
& \frac{v^{2}}{u^{2}}\left(\mathrm{bc}^{\prime}-\mathrm{b}^{\prime} \mathrm{c}\right)=u^{12}\left(5-5 \theta+4 \theta^{2}-5 \theta^{3}+2 \theta^{4}\right)+u^{4}\left(9 \theta-16 \theta^{2}+\theta^{3}+10 \theta^{4}+\theta^{5}-16 \theta^{6}+9 \theta^{7}\right) \\
& \quad+v^{4}\left(2-5 \theta+4 \theta^{2}-5 \theta^{3}+5 \theta^{4}\right) \\
& \frac{v^{2}}{u^{2}}\left(\mathrm{ab}^{\prime}-\mathrm{a}^{\prime} \mathrm{b}\right)=u^{4}\left(\theta+\theta^{3}-\theta^{4}\right)+v^{4}\left(2-5 \theta+4 \theta^{2}+3 \theta^{3}-10 \theta^{4}+3 \theta^{5}+4 \theta^{6}-5 \theta^{7}+2 \theta^{8}\right)
\end{aligned}
$$

say these values are

$$
+v^{12}\left(-1+\theta+\theta^{3}\right) ;
$$

$$
u^{12}+p u^{4}+q v^{4}+v^{12}, \quad \lambda u^{12}+\mu u^{4}+\nu v^{4}, \quad \rho u^{4}+\sigma v^{4}+\tau v^{12} .
$$

The required equation is thus

$$
0=\left(u^{12}+p u^{4}+q v^{4}+v^{12}\right)^{2}-4\left(\lambda u^{12}+\mu u^{4}+\nu v^{4}\right)\left(\rho u^{4}+\sigma v^{4}+\tau v^{12}\right),
$$

viz. the function is

$$
\begin{aligned}
& u^{24} \\
+ & u^{16}(2 p-4 \lambda \rho) \\
+ & u^{8}\left(2 q \theta^{4}+p^{2}-4 \lambda \sigma \theta^{4}-4 \mu \rho\right) \\
+ & \left(2 \theta^{12}+2 p q \theta^{4}-4 \lambda \tau \theta^{12}-4 \mu \sigma \theta^{4}-4 \nu \rho \theta^{4}\right) \\
+ & v^{8}\left(2 p \theta^{4}+q^{2}-4 \mu \tau \theta^{4}-4 \nu \sigma\right) \\
+ & v^{16}(2 q-4 \nu \tau) \\
+ & v^{24}
\end{aligned}
$$

or say it is

$$
=\left(1, b, c, d, e, f, 1 \chi u^{24}, u^{16}, u^{8}, 1, v^{8}, v^{16}, v^{24}\right) .
$$

Supposing that this has a factor $u^{8}-\Theta+v^{8}$, the form is

$$
\left(u^{16}+B u^{8}+C+D v^{8}+v^{16}\right)\left(u^{8}-\Theta+v^{8}\right)
$$

and comparing coefficients we have

$$
\begin{array}{r}
B-\Theta=b \\
C-\Theta B+\theta^{\mathrm{s}}=c \\
D \theta^{\mathrm{s}}-\Theta C+B \theta^{\mathrm{8}}=d, \\
\theta^{\mathrm{s}}-\Theta D+C=e \\
-\Theta+D=f
\end{array}
$$

where Θ has the before-mentioned value

$$
=\left(8,-28,+56,-70,+56,-28,+8 \gamma \theta, \theta^{2}, \theta^{3}, \theta^{4}, \theta^{5}, \theta^{6}, \theta^{7}\right)
$$

From the first, second, and fifth equations, $B=b+\Theta, C=c+\Theta B-\theta^{\mathrm{s}}, D=f+\Theta$; and
the third and fourth equations should then be verified identically. Writing down the coefficients of the different powers of θ, we find

$$
\begin{array}{rl}
2 p & =0+12 \quad 0-20+22-12-16+20-8\left(\theta^{0}, \ldots, \theta^{8}\right) \\
-4 \lambda \rho & =0-20+20-36+60-44+36-28+8 \\
& =0,8 \\
b & =0-8+20-56+82-56+20-8 \\
\Theta & 00+8-28+56-70+56-28+8 \\
\hline B & 0
\end{array}
$$

that is,

$$
B=-8 \theta^{2}+12 \theta^{4}-8 \theta^{6} ;
$$

and in precisely the same way the fifth equation gives

$$
D=-8 \theta^{2}+12 \theta^{4}-8 \theta^{6}
$$

We find similarly C from the second equation: writing down first the coefficients of $p^{2}, 2 q \theta^{4},-4 \lambda \sigma \theta^{4}$, and $-4 \mu \rho$, the sum of these gives the coefficients of c; and then writing underneath these the coefficients of $B \Theta$ and of $-\theta^{8}$, the final sum gives the coefficients of C : the coefficients of each line belong to $\left(\theta^{0}, \theta^{1}, \ldots, \theta^{16}\right)$.

$$
\left.\begin{array}{rl}
0036 \quad 0 & -120+132+28-316+361-20-340+396-144-112+164-80+16 \\
& -8+20-16-12+22-20 \quad 0+12 \\
& -40+140-212+140+80-188+168-92-64+176-164+80-16 \\
& -36+64
\end{array}\right)
$$

| 0 | 0 | $0+64-208+352-272-160+463-160-272+352-208+64$ | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | $0-64+224-352+224+160-392+160+224-352+224-64$ | 0 | 0 | 0 |

$\begin{array}{llllllllllll}0 & 0 & 0 & 0+16 & 0-48 & 0+70 & 0-48 & 0+16 & 0 & 0 & 0 & 0\end{array}$,
that is,

$$
C=16 \theta^{4}-48 \theta^{6}+70 \theta^{8}-48 \theta^{10}+16 \theta^{12} ;
$$

and in precisely the same way this value of C would be found from the fourth equation. There remains to be verified only the fourth equation $(D+B) \theta^{8}-\Theta C=d$, that is,

$$
2 \theta^{8}\left(-8 \theta^{2}+12 \theta^{4}-8 \theta^{6}\right)-\Theta C=(2-4 \lambda \tau) \theta^{12}+(2 p q-4 \mu \sigma-4 \nu \rho) \theta^{4},
$$

and this can be effected without difficulty.
The factor of the modular equation thus is

$$
u^{16}+v^{16}+\left(-8 \theta^{2}+12 \theta^{4}-8 \theta^{6}\right)\left(u^{8}+v^{8}\right)+16 \theta^{4}-48 \theta^{6}+70 \theta^{8}-48 \theta^{10}+16 \theta^{12}
$$

C. x .
viz. this is

$$
\begin{aligned}
& \left(u^{8}+v^{8}\right)^{2}+\left(-4 \theta^{2}+6 \theta^{4}-4 \theta^{6}\right) 2\left(u^{8}+v^{8}\right)+16 \theta^{4}-48 \theta^{6}+68 \theta^{8}-48 \theta^{10}+16 \theta^{12} \\
= & \left(u^{8}+v^{8}-4 \theta^{2}+6 \theta^{4}-4 \theta^{6}\right)^{2} \\
= & \left\{\left(u^{4}-v^{4}\right)^{2}-4 \theta^{2}\left(1-\theta^{2}\right)^{2}\right\}^{2},
\end{aligned}
$$

that is,

$$
\left\{u^{4}-v^{4}-2 \theta\left(1-\theta^{2}\right)\right\}^{2}\left\{u^{4}-v^{4}+2 \theta\left(1-\theta^{2}\right)\right\}^{2} ;
$$

or the modular equation is

$$
\left\{u^{4}-v^{4}-2 \theta\left(1-\theta^{2}\right)\right\}^{2}\left\{u^{4}-v^{4}+2 \theta\left(1-\theta^{2}\right)\right\}^{2}\left(u^{8}+v^{8}-\Theta\right)=0 ;
$$

viz. the first and second factors belong to the cubic transformation; and we have for the proper modular equation in the septic transformation $u^{8}+v^{8}-\Theta=0$, or what is the same thing $\left(1-u^{8}\right)\left(1-v^{8}\right)-(1-\theta)^{8}=0$, that is, $\left(1-u^{8}\right)\left(1-v^{8}\right)-(1-u v)^{8}=0$, the known result; or, as it may also be written,

$$
\left(\theta-u^{8}\right)\left(\theta-v^{8}\right)+7 \theta^{2}(1-\theta)^{2}\left(1-\theta+\theta^{2}\right)^{2}=0 .
$$

The value of M is given by the foregoing relations

$$
\frac{1}{M^{2}}: \frac{2}{M}: 1=\lambda u^{12}+\mu u^{4}+\nu v^{4}:-\left(u^{12}+p u^{4}+q v^{4}+v^{12}\right): \rho u^{4}+\sigma v^{4}+\tau v^{12}
$$

but these can be, by virtue of the proper modular equation $u^{8}+v^{8}-\Theta=0$, reduced into the form

$$
\frac{1}{M^{2}}: \frac{2}{M}: 1=7\left(\theta-u^{8}\right): 14\left(\theta-2 \theta^{2}+2 \theta^{3}-\theta^{4}\right):-\theta+v^{8}
$$

viz. the equality of these two sets of ratios depends upon the following identities,

$$
\begin{aligned}
& \left(-\theta+v^{8}\right)\left(u^{12}+p u^{4}+q v^{4}+v^{12}\right)+14\left(\theta-2 \theta^{2}+2 \theta^{3}-\theta^{4}\right)\left(\rho u^{4}+\sigma v^{4}+\tau v^{12}\right) \\
& \quad=\left\{-\theta u^{4}+(1-\theta)\left(-4-\theta+5 \theta^{2}-\theta^{3}-4 \theta^{4}\right) v^{4}+v^{12}\right\}\left(u^{8}-\Theta+v^{8}\right) \\
& -7\left(\theta-u^{8}\right)\left(\rho u^{4}+\sigma v^{4}+\tau v^{12}\right)-\left(\theta-v^{8}\right)\left(\lambda u^{12}+\mu u^{4}+\nu v^{4}\right) \\
& =\left\{\left(2 \theta+5 \theta^{2}+3 \theta^{3}-2 \theta^{4}-2 \theta^{5}\right) u^{4}+\left(2+2 \theta-3 \theta^{2}-5 \theta^{3}-2 \theta^{4}\right) v^{4}\right\}\left(u^{8}-\Theta+v^{8}\right), \\
& -2\left(\theta-2 \theta^{2}+2 \theta^{3}-\theta^{4}\right)\left(\lambda u^{12}+\mu u^{4}+\nu v^{4}\right)+\left(u^{8}-\theta\right)\left(u^{12}+p u^{4}+q v^{4}+v^{12}\right) \\
& =\left\{u^{12}+\theta(1-\theta)\left(3+5 \theta+3 \theta^{2}\right) u^{4}-\theta v^{4}\right\}\left(u^{8}-\Theta+v^{8}\right)
\end{aligned}
$$

which can be verified without difficulty: from the last-mentioned system of values, replacing θ by its value $u v$, we then have

$$
\frac{1}{M^{2}}: \frac{2}{M}: 1=7 u\left(v-u^{7}\right): 14 u v(1-u v)\left(1-u v+u^{2} v^{2}\right):-v\left(u-v^{7}\right)
$$

which agree with the values given p. 482 of the "Memoir"; and the analytical theory is thus completed.

