695.

A LINK-WORK FOR x^{2} : EXTRACT FROM A LETTER TO MR. SYLVESTER.

[From the American Journal of Mathematics, t. I. (1878), p. 386.]

I suppose the following is substantially your link-work for x^{2}. I use a slot to make D move in the line $O A$; but this could be replaced by proper link-work. Supposing O and A fixed; the line $O B$ is movable, and I wanted to have the

distance $O B$ measured in a fixed direction. This can be done by a hexagon $O A B Q B^{\prime} A^{\prime}$ with equal sides, and two other equal links $B^{\prime} R, B R$: then of course, if O, R, Q are in lineâ, the hexagon will be symmetrical as to $O Q$, and $O B^{\prime}$ will be equal to $O B$, and B^{\prime} may be made to move in the fixed line $O B^{\prime}$. If

$$
B O A=\frac{1}{2} \theta, \quad O A=A B=a, \quad A C=C D=\frac{1}{2} a,
$$

then

$$
O B=2 a \cos \frac{1}{2} \theta, \quad O D=a(1+\cos \theta)=2 a \cos ^{2} \frac{1}{2} \theta,
$$

or

$$
2 a \cdot O D=(O B)^{2} .
$$

November 30, 1877.

