697.

ON THE DOUBLE 9-FUNCTIONS.

[From the Journal für die reine und angewandte Mathematik (Crelle), t. LxxxviI. (1878), pp. 74-81.]

I have sought to obtain, in forms which may be useful in regard to the theory of the double 9 -functions, the integral of the elliptic differential equation

$$
\frac{d x}{\sqrt{a-x \cdot b-x \cdot c-x \cdot d-x}}+\frac{d y}{\sqrt{a-y \cdot b-y \cdot c-y \cdot d-y}}=0:
$$

the present paper has immediate reference only to this differential equation; but, on account of the design of the investigation, I have entitled it as above.

We may for the general integral of the above equation take a particular integral of the equation

$$
\frac{d x}{\sqrt{a-x \cdot b-x \cdot c-x \cdot d-x}}+\frac{d y}{\sqrt{a-y \cdot b-y \cdot c-y \cdot d-y}} \pm \frac{d z}{\sqrt{a-z \cdot b-z \cdot c-z \cdot d-z}}=0
$$

viz. this particular integral, regarding therein z as an arbitrary constant, will be the general integral of the first mentioned equation. And we may further assume that z is the value of y corresponding to the value a of x.

I write for shortness

$$
\begin{aligned}
& a-x, b-x, c-x, d-x=a, b, c, d \\
& a-y, b-y, c-y, d-y=a_{1}, b_{1}, c_{1}, d_{1}
\end{aligned}
$$

and I write also $(x y, b c, a d)$, or more shortly $(b c, a d)$ to denote the determinant

$$
\left|\begin{array}{l}
1, x+y, x y \\
1, b+c, b c \\
1, a+d, a d
\end{array}\right|
$$

we have of course $(a d, b c)=-(b c, a d)$, and there are thus the three distinct determinants $(a d, b c),(b d, a c)$ and $(c d, a b)$.

We have then for each of the functions

$$
\sqrt{\frac{\overline{a-z}}{d-z}}, \quad \sqrt{\frac{b-z}{d-z}}, \quad \sqrt{\frac{c-z}{d-z}}
$$

a set of four equivalent expressions, the whole system being

$$
\begin{aligned}
& \sqrt{\frac{a-z}{d-z}}=\frac{\sqrt{a-b \cdot a-c}\left\{\sqrt{\mathrm{adb}_{1} c_{1}}+\sqrt{\mathrm{a}_{1} \mathrm{~d}_{1} \mathrm{bc}}\right\}}{(b c, a d)}=\frac{\sqrt{a-b \cdot a-c}(x-y)}{\sqrt{\mathrm{adb}_{1} \mathrm{c}_{1}}-\sqrt{\mathrm{a}_{1} \mathrm{~d}_{1} \mathrm{bc}}} \\
& =\frac{\sqrt{a-b \cdot a-c}\left\{\sqrt{\mathrm{abc}_{1} \mathrm{~d}_{1}}+\sqrt{\mathrm{a}_{1} \mathrm{~b}_{1} \mathrm{~cd}}\right\}}{(a-c) \sqrt{\mathrm{bdb}_{1} \mathrm{~d}_{1}}-(b-d) \sqrt{\mathrm{aca}_{1} \mathrm{c}_{1}}}=\frac{\sqrt{a-b \cdot a-c}\left\{\sqrt{\mathrm{a}_{1} \mathrm{~b}_{1} \mathrm{~d}_{1}}+\sqrt{\mathrm{a}_{2} \mathrm{c}_{\mathrm{b}} \mathrm{bd}}\right\}}{(a-b) \sqrt{\mathrm{cdc}_{1} \mathrm{~d}_{1}}-(c-d) \sqrt{\mathrm{aba}_{1} \mathrm{~b}_{1}}} ; \\
& \sqrt{\frac{b-z}{d-z}}=\frac{\sqrt{\frac{a-b}{a-d}}\left\{(a-c) \sqrt{b d b_{1} d_{1}}+(b-d) \sqrt{a c a_{1} c_{1}}\right\}}{(b c, a d)}=\frac{\sqrt{\frac{a-b}{a-d}}\left\{\sqrt{a b c_{1} d_{1}}-\sqrt{a_{1} b_{1} c d}\right\}}{\sqrt{a d b_{1} c_{1}}-\sqrt{a_{1} d_{1} b c}} \\
& =\frac{\sqrt{\frac{a-b}{a-d}}(c d, a b)}{(a-c) \sqrt{\mathrm{bdb}_{1} \mathrm{~d}_{1}}-(b-d) \sqrt{\mathrm{aca}_{1} \mathrm{c}_{1}}}=\frac{\sqrt{\frac{a-b}{a-d}}\left\{(a-d) \sqrt{\mathrm{bcb}_{1} c_{1}}+(b-c) \sqrt{a d a_{1} \mathrm{~d}_{1}}\right\}}{(a-b) \sqrt{c c_{c} d_{1}}-(c-d) \sqrt{\mathrm{aba} \mathrm{~d}_{1} \mathrm{~b}_{1}}} ; \\
& \sqrt{\frac{c-z}{d-z}}=\frac{\sqrt{\frac{a-c}{a-d}}\left\{(a-b) \sqrt{c d c_{1} \mathrm{~d}_{1}}+(c-d) \sqrt{\mathrm{aba}_{1} \mathrm{~b}_{1}}\right\}}{(b c, a d)}=\frac{\sqrt{\frac{a-c}{a-d}}\left\{\sqrt{\mathrm{acb}_{1} \mathrm{~d}_{2}}-\sqrt{\mathrm{a}_{2} \mathrm{c}_{1} \mathrm{bd}}\right\}}{\sqrt{\mathrm{adb}_{1} \mathrm{c}_{1}}-\sqrt{\mathrm{a}_{1} \mathrm{~d}_{1} \mathrm{bc}}} \\
& =\frac{\sqrt{\frac{a-c}{a-d}}\left\{(a-d) \sqrt{b c b_{1} c_{1}}-(b-c) \sqrt{a d a_{1} d_{1}}\right\}}{(a-c) \sqrt{b d b_{1} d_{1}}-(b-d) \sqrt{a c a_{1} c_{1}}}=\frac{\sqrt{\frac{a-c}{a-d}}(b d, a c)}{(a-b) \sqrt{c c_{c} d_{1}}-(c-d) \sqrt{a b a_{1} b_{1}}} .
\end{aligned}
$$

The expressions in the like fourfold form for the functions $\operatorname{sn}(u+v), \operatorname{cn}(u+v), \operatorname{dn}(u+v)$ are given p. 63 of my Treatise on Elliptic Functions.

It is easy to verify first that the four expressions for the same function of ε are identical, and next that the expressions for the three several functions

$$
\sqrt{\frac{a-z}{d-z}}, \quad \sqrt{\frac{b-z}{d-z}}, \quad \sqrt{\frac{c-z}{d-z}},
$$

are consistent with each other. For instance, comparing the first and second expressions of $\sqrt{\frac{a-z}{d-z}}$, the equation to be verified is

$$
\mathrm{adb}_{1} \mathrm{c}_{1}-\mathrm{a}_{1} \mathrm{~d}_{1} \mathrm{bc}=(x-y)(b c, a d),
$$

which is at once shown to be true. Again comparing the first and second expressions for $\sqrt{\frac{b-z}{d-z}}$, we ought to have

$$
\left\{(a-c) \sqrt{\mathrm{bdb}_{1} \mathrm{~d}_{1}}+(b-d) \sqrt{\mathrm{aca}_{1} \mathrm{c}_{1}}\right\}\left\{\sqrt{\mathrm{adb}_{1} \mathrm{c}_{1}}-\sqrt{\mathrm{a}_{2} \mathrm{~d}_{1} \mathrm{bc}}\right\}=(b c, a d)\left\{\sqrt{\mathrm{ab} c_{1} \mathrm{~d}_{2}}-\sqrt{\mathrm{a}_{1} \mathrm{~b}_{1} c \mathrm{c}}\right\} .
$$

Here the product on the left-hand side is

$$
=(a-c)\left\{\mathrm{b}_{1} \mathrm{~d} \sqrt{\mathrm{abc}_{1} \mathrm{~d}_{1}}-\mathrm{bd}_{1} \sqrt{\mathrm{a}_{1} \mathrm{~b}_{1} \mathrm{~cd}}\right\}+(b-d)\left\{-\mathrm{a}_{1} \mathrm{c} \sqrt{\mathrm{abc}_{1} \mathrm{~d}_{1}}+\mathrm{ac}_{1} \sqrt{\mathrm{a}_{1} \mathrm{~b}_{1} \mathrm{~cd}}\right\}
$$

viz. this is

$$
=\sqrt{\mathrm{abc}_{1} \mathrm{~d}_{1}}\left\{(a-c) \mathrm{b}_{1} \mathrm{~d}-(b-d) \mathrm{a}_{1} \mathrm{c}\right\}-\sqrt{\mathrm{a}_{1} \mathrm{~b}_{1} \mathrm{~cd}}\left\{(a-c) \mathrm{bd}_{1}-(b-d) \mathrm{ac}_{1}\right\},
$$

and in this last expression the two terms in \{\} are at once shown to be each $=(b c, a d)$; whence the identity in question.

Comparing in like manner the first expressions for $\sqrt{\frac{a-z}{d-z}}$ and $\sqrt{\frac{b-z}{d-z}}$ respectively, we have

$$
\begin{aligned}
& (b-d)(b c, a d)^{2} \frac{a-z}{d-z}=(a-b)(a-c)(b-d)\left\{\operatorname{adb}_{1} \mathrm{c}_{1}+\mathrm{a}_{1} \mathrm{~d}_{1} \mathrm{bc}+2 \sqrt{\mathrm{abcda}_{1} \mathrm{~b}_{1} \mathrm{c}_{1} \mathrm{~d}_{1}}\right\} \\
& (d-a)(b c, a d)^{2} \frac{b-z}{d-z}= \\
& \quad-(a-b)\left\{(a-c)^{2} \operatorname{bdb}_{1} \mathrm{~d}_{1}+(b-d)^{2} \operatorname{aca}_{1} \mathrm{c}_{1}+2(a-c)(b-d) \sqrt{\mathrm{abcda}_{1} \mathrm{~b}_{1} \mathrm{c}_{1} \mathrm{~d}_{1}}\right\},
\end{aligned}
$$

whence, adding, the radical on the right-hand side disappears; the whole equation divides by $-(a-b)$, and omitting this factor, the relation to be verified is

$$
(b c, a d)^{2}=(a-c)^{2} \mathrm{bdb}_{1} \mathrm{~d}_{1}+(b-d)^{2} \mathrm{aca}_{1} \mathrm{c}_{1}-(a-c)(b-d)\left(\mathrm{adb}_{1} \mathrm{c}_{1}+\mathrm{a}_{1} \mathrm{~d}_{1} \mathrm{bc}\right) ;
$$

the right-hand side is here

$$
=\left\{(a-c) \mathrm{b}_{1} \mathrm{~d}-(b-d) \mathrm{a}_{1} \mathrm{c}\right\}\left\{(a-c) \mathrm{bd}_{1}-(b-d) \mathrm{ac}_{1}\right\},
$$

and each of the two factors being $=(b c, a d)$, the identity is verified. It thus appears that the twelve equations are in fact equivalent to a single equation in x, y, z.

Writing in the several formulæ $x=a, b, c, d$ successively, they become

$$
\begin{array}{rrrr}
x=a, & x=b, & x=c, & x=d, \\
\frac{a-z}{d-z}=\frac{\mathrm{a}_{1}}{\mathrm{~d}_{1}}, & -\frac{c-a}{d-b} \cdot \frac{\mathrm{~b}_{1}}{\mathrm{c}_{1}}, & -\frac{b-a}{d-c} \cdot \frac{\mathrm{c}_{1}}{\mathrm{~b}_{1}}, & \frac{a-b \cdot a-c}{d-b \cdot d-c} \cdot \frac{\mathrm{~d}_{1}}{\mathrm{a}_{1}}, \\
\frac{b-z}{d-z}=\frac{\mathrm{b}_{1}}{\mathrm{~d}_{1}}, & -\frac{c-b}{d-a} \cdot \frac{\mathrm{a}_{1}}{\mathrm{c}_{1}}, & \frac{b-a \cdot b-c}{d-a \cdot d-c} \cdot \frac{\mathrm{~d}_{1}}{\mathrm{~b}_{1}}, & -\frac{a-b}{d-c} \cdot \frac{\mathrm{c}_{1}}{\mathrm{a}_{1}}, \\
\frac{c-z}{d-z}=\frac{\mathrm{c}_{1}}{\mathrm{~d}_{1}}, & \frac{c-a \cdot c-b}{d-a \cdot d-b} \cdot \frac{\mathrm{~d}_{1}}{\mathrm{c}_{1}}, & -\frac{b-c}{d-a} \cdot \frac{\mathrm{a}_{1}}{\mathrm{~b}_{1}}, & -\frac{a-c}{d-b} \cdot \frac{\mathrm{~b}_{1}}{\mathrm{a}_{1}},
\end{array}
$$

viz. for $x=a$, the relation is $z=y$, but in the other three cases respectively the relation is a linear one, $z=\frac{\alpha y+\beta}{\gamma y+\delta}$.

Rationalising the first equation for $\sqrt{\frac{a-z}{d-z}}$, we have

$$
(b c, a d)^{2}(a-z)=(a-b)(a-c)(d-z)\left\{\mathrm{adb}_{1} \mathrm{c}_{1}+\mathrm{a}_{1} \mathrm{~d}_{1} \mathrm{bc}+2 \sqrt{\mathrm{abcda}_{1} \mathrm{~b}_{1} \mathrm{c}_{1} \mathrm{~d}_{1}}\right\},
$$

and thence

$$
\begin{aligned}
& \left\{(b c, a d)^{2}(a-z)-(a-b)(a-c)(d-z)\left(\operatorname{adb}_{1} \mathrm{c}_{1}+\mathrm{a}_{1} \mathrm{~d}_{1} \mathrm{bc}\right)\right\}^{2} \\
& =(a-b)^{2}(a-c)^{2}(d-z)^{2} .4 a \mathrm{abcda} \mathrm{a}_{1} \mathrm{~b}_{1} \mathrm{c}_{1} \mathrm{~d}_{1} .
\end{aligned}
$$

Expanding, and observing that
$\left(a d b_{1} c_{1}+a_{1} d_{1} b c\right)^{2}=\left(a d b_{1} c_{1}-a_{1} d_{1} b c\right)^{2}+4 a b c d a_{1} b_{1} c_{1} d_{1}=(b c, a d)^{2}(x-y)^{2}+4 a b c d a_{1} b_{1} c_{1} d_{1}$, the whole equation becomes divisible by $(b c, a d)^{2}$, and omitting this factor, the equation is

$$
(b c, a d)^{2}(a-z)^{2}-2(a-b)(a-c)(a-z)(d-z)\left(\mathrm{adb}_{1} \mathrm{c}_{1}+\mathrm{a}_{1} \mathrm{~d}_{1} \mathrm{bc}\right)
$$

or, as this may also be written,

$$
+(a-b)^{2}(a-c)^{2}(d-z)^{2}(x-y)^{2}=0
$$

$$
\begin{aligned}
& z^{2}\left\{(b c, a d)^{2}-2(a-b)(a-c)\left(\mathrm{adb}_{1} \mathrm{c}_{1}+\mathrm{a}_{1} \mathrm{~d}_{1} \mathrm{bc}\right) \quad+(a-b)^{2}(a-c)^{2}(x-y)^{2}\right. \\
- & 2 z\left\{(b c, a d) a-(a-b)(a-c)\left(\mathrm{adb}_{1} \mathrm{c}_{1}+\mathrm{a}_{1} \mathrm{~d}_{1} \mathrm{bc}\right)(a+d)+(a-b)^{2}(a-c)^{2}(x-y)^{2} d\right\} \\
+\quad & \left\{(b c, a d) a^{2}-2(a-b)(a-c)\left(\mathrm{adb}_{1} \mathrm{c}_{1}+\mathrm{a}_{1} \mathrm{~d}_{1} \mathrm{bc}\right) a d \quad+(a-b)^{2}(a-c)^{2}(x-y)^{2} d^{2}\right\}=0 .
\end{aligned}
$$

This is really a symmetrical equation in x, y, z of the form

$$
\begin{aligned}
& A \\
+ & 2 B(x+y+z) \\
+ & C\left(x^{2}+y^{2}+z^{2}\right) \\
+ & 2 D(y z+z x+x y) \\
+ & 2 E\left(y^{2} z+y z^{2}+z^{2} x+z x^{2}+x^{2} y+x y^{2}\right) \\
+ & 4 F x y z \\
+ & 2 G\left(x^{2} y z+x y^{2} z+x y z^{2}\right) \\
+ & H\left(y^{2} z^{2}+z^{2} x^{2}+x^{2} y^{2}\right) \\
+ & 2 I\left(x y^{2} z^{2}+x^{2} y z^{2}+x^{2} y^{3} z\right) \\
+ & J x^{2} y^{2} z^{2}=0
\end{aligned}
$$

the several coefficients being symmetrical as regards b, c, d, but the a entering unsymmetrically: the actual values are

$$
\begin{aligned}
& A=a^{4}\left\{b^{2} c^{2}+b^{2} d^{2}+c^{2} d^{2}-2 b c d(b+c+d)\right\}+2 a^{3} b c d(b c+b d+c d)-3 a^{2} b^{2} c^{2} d^{2}, \\
& B=2 a^{4} b c d-a^{3}\left(b^{2} c^{2}+b^{2} d^{2}+c^{2} d^{2}\right)+a b^{2} c^{2} d^{2} \text {, } \\
& C=-4 a^{3} b c d+a^{2}(b c+b d+c d)^{2}-2 a b c d(b c+b d+c d)+b^{2} c^{2} d^{2} \text {, } \\
& D=-a^{4}(b c+b d+c d)+a^{3}\left(b^{2} c+b c^{2}+b^{2} d+b d^{2}+c^{2} d+c d^{2}-2 b c d^{2}\right) \\
& +a^{2}\left\{b^{2} c^{2}+b^{2} d^{2}+c^{2} d^{2}-b c d(b+c+d)\right\}-b^{2} c^{2} d^{2}, \\
& E=a^{3}(b c+b d+c d)-a^{2}\left(b^{2} c+b c^{2}+b^{2} d+b d^{2}+c^{2} d+c d^{2}\right)+a b c d(b+c+d) \text {, } \\
& F=a^{4}(b+c+d)-a^{3}\left(b^{2}+c^{2}+d^{2}+b c+b d+c d\right)+6 a^{2} b c d \\
& -a\left\{b^{2} c^{2}+b^{2} d^{2}+c^{2} d^{2}+b c d(b+c+d)\right\}+b c d(b c+b d+c d), \\
& G=-a^{4}+a^{2}\left(b^{2}+c^{2}+d^{2}-b c-b d-c d\right)+a\left(b^{2} c+b c^{2}+b^{2} d+b d^{2}+c^{2} d+c d^{2}-2 b c d\right) \\
& -b c d(b+c+d) \text {, } \\
& H=a^{4}-2 a^{3}(b+c+d)+a^{2}(b+c+d)^{2}-4 a b c d, \\
& I=a^{3}-a\left(b^{2}+c^{2}+d^{2}\right)+2 b c d \text {, } \\
& J=-3 a^{2}+2 a(b+c+d)+b^{2}+c^{2}+d^{2}-2(b c+b d+c d) \text {. } \\
& \text { C. } \mathrm{X} \text {. }
\end{aligned}
$$

It may be remarked by way of verification that the equation remains unaltered on substituting for x, y, z, a, b, c, d their reciprocals and multiplying the whole by $a^{4} b^{2} c^{2} d^{2} x^{2} y^{2} z^{2}$.

I further remark that, writing $a=0$, we have

$$
\begin{array}{ll}
A=0, \quad B=0, \quad C=b^{2} c^{2} d^{2}, \quad D=-b^{2} c^{2} d^{2}, \quad E=0, \quad F=b c d(b c+b d+c d) \\
G=-b c d(b+c+d), \quad H=0, \quad I=2 b c d, \quad J=b^{2}+c^{2}+d^{2}-2(b c+b d+c d)
\end{array}
$$

and writing also

$$
\begin{gathered}
\epsilon=1, \quad-\delta=(b+c+d), \quad \gamma=b c+b d+c d, \quad-\beta=b c d, \\
\left.a-x \cdot b-x \cdot c-x \cdot d-x=\beta x+\gamma x^{2}+\delta x^{3}+\epsilon x^{4}\right)
\end{gathered}
$$

we have the formula

$$
\beta^{2}\left(x^{2}+y^{2}+z^{2}-2 y z-2 z x-2 x y\right)
$$

$-4 \beta \gamma x y z$
$-2 \beta \delta x y z(x+y+z)$
$-4 \beta \epsilon x y z(y z+z x+x y)$
$+\left(\delta^{2}-4 \gamma \epsilon\right) x^{2} y^{2} z^{2}=0$,
given p. 348 of my Elliptic Functions as a particular integral of the differential equation when the radical is $\sqrt{\beta x+\gamma x^{2}+\delta x^{3}+\epsilon x^{4}}$.

Let the equation in (x, y, z) be called $u=0 ; u$ has been given in the form $u=\left(\mathfrak{C} z^{2}-2 \mathfrak{B} z+\mathfrak{A}\right.$, and we thence have $\frac{1}{2} \frac{d u}{d z}=\mathfrak{C} z-\mathfrak{B}$ which, in virtue of the equation $u=0$ itself, becomes $\frac{1}{2} \frac{d u}{d z}=\sqrt{\mathfrak{B}^{2}-\mathfrak{H C}}$; we find easily

$$
\mathfrak{B}^{2}-\mathfrak{A} \mathfrak{C}=(a-b)^{2}(a-c)^{2}(a-d)^{2}\left\{\left(\operatorname{adb}_{1} \mathrm{c}_{1}+\mathrm{a}_{1} \mathrm{~d}_{1} \mathrm{bc}\right)^{2}-(b c, a d)^{2}(x-y)^{2}\right\},
$$

or, attending to the relation

$$
\begin{aligned}
\left(\mathrm{adb}_{1} \mathrm{c}_{1}+\mathrm{a}_{1} \mathrm{~d}_{1} b c\right)^{2} & =\left(a \mathrm{ad}_{1} \mathrm{c}_{1}-\mathrm{a}_{1} \mathrm{~d}_{1} \mathrm{bc}\right)^{2}+4 a b c d a_{1} \mathrm{~b}_{1} \mathrm{c}_{1} d_{1} \\
& =(b c, a d)^{2}(x-y)^{2}+4 a b c d a_{1} \mathrm{~b}_{1} \mathrm{c}_{1} \mathrm{~d}_{1}
\end{aligned}
$$

this is

$$
\mathfrak{B}^{2}-\mathfrak{A}\left(\mathfrak{E}=4(a-b)^{2}(a-c)^{2}(a-d)^{2} \text { abcda } \mathrm{b}_{1} \mathrm{c}_{1} \mathrm{~d}_{1},-\right.
$$

or we have

$$
\frac{d u}{4} \frac{d u}{d z}=(a-b)(a-c)(a-d) \sqrt{\text { abcd }} \sqrt{\mathrm{a}_{1} \mathrm{~b}_{1} \mathrm{c}_{1} \mathrm{~d}_{1}} .
$$

Writing

$$
a-z, b-z, c-z, d-z=\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}, \mathrm{~d}_{2},
$$

we have of course the like formulæ

$$
\begin{aligned}
& \frac{1}{4} \frac{d u}{d x}=(a-b)(a-c)(a-d) \sqrt{a_{1} \mathrm{~b}_{1} \mathrm{c}_{1} \mathrm{~d}_{1}} \sqrt{\mathrm{a}_{2} \mathrm{~b}_{2} \mathrm{c}_{2} \mathrm{~d}_{2}}, \\
& \frac{1}{4} \frac{d u}{d y}=(a-b)(a-c)(a-d) \sqrt{\text { abcd }} \sqrt{a_{2} \mathrm{~b}_{2} \mathrm{c}_{2} \mathrm{~d}_{2}}
\end{aligned}
$$

and the equation $d u=0$ then gives

$$
\frac{d x}{\sqrt{\mathrm{abcd}}}+\frac{d y}{\sqrt{\mathrm{a}_{1} \mathrm{~b}_{1} c_{1} d_{1}}}+\frac{d z}{\sqrt{a_{2} b_{2} c_{2} \mathrm{~d}_{2}}}=0
$$

as it should do. The differential equation might also have been verified directly from any one of the expressions for

$$
\sqrt{\frac{a-z}{d-z}}, \quad \sqrt{\frac{b-z}{d-z}} \text { or } \sqrt{\frac{c-z}{d-z}} .
$$

Writing for shortness

$$
X=a-x \cdot b-x \cdot c-x \cdot d-x, \text { etc. }
$$

then the general integral of the differential equation

$$
\frac{d x}{\sqrt{X}}+\frac{d y}{\sqrt{ } Y}+\frac{d z}{\sqrt{Z}}=0
$$

by Abel's theorem is

$$
\left|\begin{array}{cccc}
x^{2}, & x, & 1, & \sqrt{ } X \\
y^{2}, & y, & 1, & \sqrt{ } Y \\
z^{2}, & z, & 1, & \sqrt{ } Z \\
w^{2}, & w, & 1, & \sqrt{ } W
\end{array}\right|=0,
$$

where w is the constant of integration: and it is to be shown that the value of w which corresponds to the integral given in the present paper is $w=a$. Observe that writing in the determinant $w=a$, the determinant on putting therein $x=a$, would vanish whether z were or were not $=y$; but this is on account of an extraneous factor $a-w$, so that we do not thus prove the required theorem that (w being $=a$) we have $y=z$ when $x=a$.

An equivalent form of Abel's integral is that there exist values A, B, C such that

$$
\begin{aligned}
& A x^{2}+B x+C=\sqrt{ } X, \\
& A y^{2}+B y+C=\sqrt{ } Y \\
& A z^{2}+B z+C=\sqrt{ } Z \\
& A w^{2}+B w+C=\sqrt{ } W
\end{aligned}
$$

or, what is the same thing, that we have identically

$$
\left(A \theta^{2}+B \theta+C\right)^{2}-\Theta=\left(A^{2}-1\right) \cdot \theta-x \cdot \theta-y \cdot \theta-z \cdot \theta-w
$$

We have therefore

$$
C^{2}-a b c d=\left(A^{2}-1\right) x y z w,
$$

or say

$$
x y z w=\frac{C^{2}-a b c d}{A^{2}-1}
$$

which equation, regarding therein A, B, C as determined by the three equations

$$
\begin{aligned}
& A x^{2}+B x+C=\sqrt{ } X \\
& A y^{2}+B y+C=\sqrt{ } Y \\
& A w^{2}+B w+C=\sqrt{ } W
\end{aligned}
$$

is a form of Abel's integral, giving z rationally in terms of x, y, w.
Supposing that, when $x=a, z=y$: then the last-mentioned integral gives

$$
a y^{2} w=\frac{C^{2}-a b c d}{A^{2}-1}
$$

where A, C are now determined by the equations

$$
\begin{aligned}
& A a^{2}+B a+C=0 \\
& A y^{2}+B y+C=\sqrt{ } Y \\
& A w^{2}+B w+C=\sqrt{ } W
\end{aligned}
$$

and, imagining these values actually substituted, it is to be shown that the equation

$$
a y^{2} w=\frac{C^{2}-a b c d}{A^{2}-1}
$$

is satisfied by the value $w=a$.
We have

$$
\begin{aligned}
& A \cdot a-y \cdot a-w \cdot w-y=\quad(a-w) \sqrt{Y}-\quad(a-y) \sqrt{W} \\
& B \cdot a-y \cdot a-w \cdot w-y=(a-w)(a+w) \cdot!\bar{Y}-(a-y)(a+y) \sqrt{W} \\
& C \cdot a-y \cdot a-w \cdot w-y=(a-w) a w \quad \sqrt{Y}-(a-y) a y \quad \sqrt{W}
\end{aligned}
$$

or writing as before
and also

$$
\begin{aligned}
& a-y, b-y, c-y, d-y=\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}, \mathrm{~d}_{1}, \\
& a-w, b-w, c-w, d-w=\mathrm{a}_{3}, \mathrm{~b}_{3}, \mathrm{c}_{3}, \mathrm{~d}_{3}
\end{aligned}
$$

then $Y=\mathrm{a}_{1} \mathrm{~b}_{1} \mathrm{c}_{1} \mathrm{~d}_{1}, W=\mathrm{a}_{3} \mathrm{~b}_{3} \mathrm{c}_{3} \mathrm{~d}_{3}$, and the formulæ become

$$
\begin{aligned}
& A=\frac{1}{(w-y) \sqrt{a_{1} a_{3}}}\left\{\sqrt{a_{3} \mathrm{~b}_{1} \mathrm{c}_{1} \mathrm{~d}_{1}}-\sqrt{\mathrm{a}_{1} \mathrm{~b}_{3} \mathrm{c}_{3} d_{3}}\right\}, \\
& B=\frac{1}{(w-y) \sqrt{\mathrm{a}_{1} \mathrm{a}_{3}}}\left\{-(a+w) \sqrt{\mathrm{a}_{3} \mathrm{~b}_{1} \mathrm{c}_{1} \mathrm{~d}_{1}}+(a+y) \sqrt{\mathrm{a}_{1} \mathrm{~b}_{3} \mathrm{c}_{3} d_{3}}\right\}, \\
& C=\frac{1}{(w-y) \sqrt{\mathrm{a}_{1} \mathrm{a}_{3}}}\left\{a w \sqrt{\mathrm{a}_{3} \mathrm{~b}_{1} \mathrm{c}_{1} d_{1}}-a y \sqrt{\mathrm{a}_{1} \mathrm{~b}_{3} c_{3} \mathrm{~d}_{3}}\right\} .
\end{aligned}
$$

If in these formulæ w is indefinitely nearly $=a$, then a_{3} is indefinitely small, so that $\sqrt{a_{3} \mathrm{~b}_{1} \mathrm{c}_{1} \mathrm{~d}_{1}}$ may be neglected in comparison with $\sqrt{\mathrm{a}_{1} \mathrm{~b}_{3} \mathrm{c}_{3} \mathrm{~d}_{3}}$: also $w-y$ may be put $=\mathrm{a}_{1}$; the formulæ thus become

$$
A=-\frac{\sqrt{b_{3} \mathrm{c}_{3} \mathrm{~d}_{3}}}{\mathrm{a}_{1} \sqrt{\mathrm{a}_{3}}}, \quad B=(a+y) \frac{\sqrt{\mathrm{b}_{3} \mathrm{c}_{3} \mathrm{~d}_{3}}}{\mathrm{a}_{1} \sqrt{\mathrm{a}_{3}}}, \quad C=-a y \frac{\sqrt{\mathrm{~b}_{3} \mathrm{c}_{3} \mathrm{~d}_{3}}}{\mathrm{a}_{1} \sqrt{\mathrm{a}_{3}}},
$$

where the values of A, B, C are each of them indefinitely large on account of the factor $\sqrt{a_{3}}$ in the denominator; the value of C is $C=a y A$, and substituting this value in the equation

$$
a y^{2} w=\frac{C^{2}-a b c d}{A^{2}-1}
$$

and then considering A as indefinitely large, the equation becomes $a y^{2} w=a^{2} y^{2}$, that is, $w=a$; so that $w=a$ is a value of w satisfying this equation.

Cambridge, 3 July, 1878.

