703.

ON THE ADDITION OF THE DOUBLE 9-FUNCTIONS.

[From the Journal für die reine und angewandte Mathematik (Crelle), t. LxxxviII. (1879),

$$
\text { pp. } 74-81 \text {.] }
$$

I assume in general

$$
\Theta=a-\theta \cdot b-\theta \cdot c-\theta \cdot d-\theta \cdot e-\theta \cdot f-\theta,
$$

and I consider the variables x, y, z, w, p, q, connected by the equations

$$
\left|\begin{array}{rrrrrr}
1, & 1, & 1, & 1, & 1, & 1 \\
x, & y, & z, & w, & p, & q \\
x^{2}, & y^{2}, & z^{2}, & w^{2}, & p^{2}, & q^{2} \\
x^{3}, & y^{3}, & z^{3}, & w^{3}, & p^{3}, & q^{3} \\
\sqrt{X}, & \sqrt{Y}, & \sqrt{Z}, & \sqrt{W}, & \sqrt{P}, & \sqrt{Q}
\end{array}\right|
$$

equivalent to two independent equations, which in fact serve to determine p, q, or say the symmetrical functions $p+q$ and $p q$, in terms of a, y, z, w.

These equations, it is well known, constitute a particular integral of the differential equations

$$
\begin{aligned}
& \frac{d x}{\sqrt{X}}+\frac{d y}{\sqrt{Y}}+\frac{d z}{\sqrt{Z}}+\frac{d w}{\sqrt{W}}+\frac{d p}{\sqrt{P}}+\frac{d q}{\sqrt{Q}}=0 \\
& \frac{x d x}{\sqrt{X}}+\frac{y d y}{\sqrt{Y}}+\frac{z d z}{\sqrt{Z}}+\frac{w d w}{\sqrt{W}}+\frac{p d p}{\sqrt{P}}+\frac{q d q}{\sqrt{Q}}=0
\end{aligned}
$$

or what is the same thing, regarding p, q as arbitrary constants, they constitute the general integral of the differential equations

$$
\begin{aligned}
& \frac{d x}{\sqrt{X}}+\frac{d y}{\sqrt{Y}}+\frac{d z}{\sqrt{Z}}+\frac{d w}{\sqrt{W}}=0 \\
& \frac{x d x}{\sqrt{X}}+\frac{y d y}{\sqrt{Y}}+\frac{z d z}{\sqrt{Z}}+\frac{w d w}{\sqrt{W}}=0 .
\end{aligned}
$$

I attach the numbers $1,2,3,4,5,6$ to the variables x, y, z, w, p, q, respectively: and write
$A_{12}=\sqrt{a-x \cdot a-y} ; \quad A_{34}=\sqrt{a-z \cdot a-w} ; \quad A_{56}=\sqrt{a-p \cdot a-q} ;$
!
(six equations),
$A B_{12}=\frac{1}{x-y}\{\sqrt{a-x \cdot b-x \cdot f-x \cdot c-y \cdot d-y \cdot e-y}-\sqrt{a-y \cdot b-y \cdot f-y \cdot c-x \cdot d-x \cdot e-x}\}$; etc.
(ten equations),
where it is to be borne in mind that $A B$ is an abbreviation for $A B F . C D E$, and so in other cases, the letter F belonging always to the expressed duad: there are thus in all the sixteen functions $A, B, C, D, E, F, A B, A C, A D, A E, B C, B D$, $B E, C D, C E, D E$, these being functions of x and y, of z and w, and of p and q, according as the suffix is 12,34 , or 56 .

It is to be shown that the 16 functions $A_{56}, A B_{56}$ of p and q can be by means of the given equations expressed as proportional to rational and integral functions of the 16 functions $A_{12}, A B_{12}, A_{34}, A B_{34}$ of x and y, and of z and w respectively: and it is clear that in so expressing them we have in effect the solution of the problem of the addition of the double 9 -functions.

I use when convenient the abbreviated notations
we have of course

$$
\begin{aligned}
a & -x=\mathrm{a}_{1}, \quad a-y=\mathrm{a}_{2}, \quad \text { etc. }, \\
b & -x=\mathrm{b}_{1}, \quad \text { etc. }, \\
\theta_{12} & =x-y, \quad \theta_{34}=z-w, \quad \theta_{56}=p-q \\
X & =\mathrm{a}_{1} \mathrm{~b}_{1} \mathrm{c}_{1} \mathrm{~d}_{1} \mathrm{e}_{1} \mathrm{f}_{1}, \\
A_{12} & =\sqrt{\mathrm{a}_{1} \mathrm{a}_{2}} \\
A B_{12} & =\frac{1}{\theta_{12}}\left\{\sqrt{\mathrm{a}_{1} \mathrm{~b}_{1} \mathrm{t}_{1} \mathrm{c}_{2} \mathrm{~d}_{2} \mathrm{e}_{2}}-\sqrt{\mathrm{a}_{2} \mathrm{~b}_{2} \mathrm{f}_{2} \mathrm{c}_{1} \mathrm{~d}_{1} \mathrm{e}_{1}}\right\}, \text { etc. }
\end{aligned}
$$

Proceeding to the investigation, the equations between the-variables are obviously those obtained by the elimination of the arbitrary multipliers $\alpha, \beta, \gamma, \delta, \epsilon$ from the six equations obtained from

$$
\alpha \theta^{3}+\beta \theta^{2}+\gamma \theta+\delta=\epsilon \sqrt{\Theta},
$$

by writing therein for θ the values x, y, z, w, p, q successively; we may consider the four equations

$$
\begin{aligned}
& \alpha x^{3}+\beta x^{2}+\gamma x+\delta=\epsilon \sqrt{\bar{X}} \\
& \alpha y^{3}+\beta y^{2}+\gamma y+\delta=\epsilon \sqrt{\bar{Y}} \\
& \alpha z^{3}+\beta z^{2}+\gamma z+\delta=\epsilon \sqrt{Z} \\
& \alpha w^{3}+\beta w^{2}+\gamma w+\delta=\epsilon \sqrt{W}
\end{aligned}
$$

as serving to determine the ratios $\alpha: \beta: \gamma: \delta: \epsilon$ in terms of x, y, z, w; and we have then for the determination of p, q the remaining two equations

$$
\begin{aligned}
& \alpha p^{3}+\beta p^{2}+\gamma p+\delta=\epsilon \sqrt{P} \\
& \alpha q^{3}+\beta q^{2}+\gamma q+\delta=\epsilon \sqrt{Q}
\end{aligned}
$$

which two equations may be replaced by the identity

$$
\left(\alpha \theta^{3}+\beta \theta^{2}+\gamma \theta+\delta\right)^{2}-\epsilon^{2} \Theta=\alpha^{2}-\epsilon^{2} \cdot \theta-x \cdot \theta-y \cdot \theta-z \cdot \theta-w \cdot \theta-p \cdot \theta-q .
$$

Writing herein $\theta=$ any one of the values a, b, c, d, e, f, for instance $\theta=a$, and taking the square root of each side, we have

$$
\alpha a^{3}+\beta a^{2}+\gamma a+\delta=\sqrt{a^{2}-\epsilon^{2}} \sqrt{a-x \cdot a-y} \sqrt{a-z \cdot a-w} \sqrt{a-p \cdot a-q},
$$

or as this may be written

$$
\alpha a^{3}+\beta a^{2}+\gamma a+\delta=\sqrt{\alpha^{2}-\epsilon^{2}} A_{12} \cdot A_{34} \cdot A_{56}
$$

which equation when reduced gives the proportional value of A_{56}.
For the reduction we require the value of $\alpha a^{3}+\beta a^{2}+\gamma a+\delta$: calling this for the moment Ω, we join to the four equations a fifth equation

$$
\alpha a^{3}+\beta a^{2}+\gamma a+\delta=\Omega
$$

Eliminating $\alpha, \beta, \gamma, \delta$, we find

$$
\left|\begin{array}{ccccc}
x^{3}, & x^{2}, & x, & 1, & \in \sqrt{X} \\
y^{3}, & y^{2}, & y, & 1, & \in \sqrt{ } Y \\
z^{3}, & z^{2}, & z, & 1, & \in \sqrt{ } Z \\
w^{3}, & w^{2}, & w, & 1, & \in \sqrt{ } W \\
a^{3}, & a^{2}, & a, & 1, & \Omega
\end{array}\right|=0
$$

or, what is the same thing,

$$
\Omega\left|\begin{array}{cccc}
x^{3}, & x^{2}, & x, & 1 \\
y^{3}, & y^{2}, & y, & 1 \\
z^{3}, & z^{2}, & z, & 1 \\
w^{3}, & w^{2}, & w, & 1
\end{array}\right|+\epsilon\left|\begin{array}{ccccc}
\sqrt{X}, & x^{3}, & x^{2}, & x, & 1 \\
\sqrt{Y}, & y^{3}, & y^{2}, & y, & 1 \\
\sqrt{Z}, & z^{3}, & z^{2}, & z, & 1 \\
\sqrt{W}, & w^{3}, & w^{2}, & w, & 1 \\
& a^{3}, & a^{2}, & a, & 1
\end{array}\right|=0 ;
$$

viz. this is
$\Omega \cdot x-y \cdot x-z \cdot x-w \cdot y-z \cdot y-w \cdot z-w=-\epsilon\{\sqrt{X} \cdot y-z \cdot y-w \cdot y-a \cdot z-w \cdot z-a \cdot w-a$

$$
\begin{aligned}
& +\sqrt{ } Y \cdot z-w \cdot z-a \cdot z-x \cdot w-a \cdot w-x \cdot a-x \\
& +\sqrt{Z} \cdot w-a \cdot w-x \cdot w-y \cdot a-x \cdot a-y \cdot x-y \\
& +\sqrt{W} \cdot a-x \cdot a-y \cdot a-z \cdot x-y \cdot x-z \cdot y-z\}
\end{aligned}
$$

c. x .
or as it may be written
$\Omega \cdot x-z \cdot x-w \cdot y-z \cdot y-w=\frac{\epsilon \cdot a-z \cdot a-w}{x-y}\{y-z \cdot y-w \cdot a-y \cdot \sqrt{ } X-x-z \cdot x-w \cdot a-x \cdot \sqrt{ } Y\}$

$$
+\frac{\epsilon \cdot a-x \cdot a-y}{z-w}\{w-x \cdot w-y \cdot a-w \cdot \sqrt{ } \bar{Z}-z-x \cdot z-y \cdot a-z \cdot \sqrt{W}\},
$$

an equation for the determination of Ω.
Consider first the expression which multiplies $\epsilon \cdot a-z \cdot a-w$; this is

$$
=\frac{1}{\theta_{12}}\left\{y-z \cdot y-w \cdot \mathrm{a}_{2} \sqrt{X}-x-z \cdot x-w \cdot \mathrm{a}_{1} \sqrt{Y}\right\}
$$

we have

$$
B E_{12}=\frac{1}{\theta_{12}}\left\{\sqrt{b_{1} e_{1} f_{1} \mathrm{f}_{2} \mathrm{c}_{2} \mathrm{~d}_{2}}-\sqrt{\mathrm{b}_{2} \mathrm{e}_{2} \mathrm{f}_{2} \mathrm{a}_{1} \mathrm{c}_{1} \mathrm{~d}_{1}}\right\}
$$

and multiplying this by

$$
A_{12} \cdot C_{12} \cdot D_{12},=\sqrt{\mathrm{a}_{1} \mathrm{c}_{1} \mathrm{~d}_{1} \mathrm{a}_{2} \mathrm{c}_{2} \mathrm{~d}_{2}},
$$

we derive

$$
B E_{12} . C_{12} . D_{12} . A_{12}=\frac{1}{\theta_{12}}\left\{\mathrm{c}_{2} \mathrm{~d}_{2} \mathrm{a}_{2} \sqrt{X}-\mathrm{c}_{1} \mathrm{~d}_{1} \mathrm{a}_{1} \sqrt{\bar{Y}}\right\}
$$

and similarly two other equations; the system may be written

$$
\begin{aligned}
& \text { BE.C.D. } A=\frac{1}{\theta_{12}}\left\{\mathrm{c}_{2} \mathrm{~d}_{2} \mathrm{a}_{2} \sqrt{X}-\mathrm{c}_{1} \mathrm{~d}_{1} \mathrm{a}_{1} \sqrt{ } \bar{Y}\right\} \text {, } \\
& C E \cdot D \cdot B \cdot A=„\left\{\mathrm{~d}_{2} \mathrm{~b}_{2}, "-\mathrm{d}_{1} \mathrm{~b}_{1}, "\right\}, \\
& D E \cdot B \cdot C \cdot A=\#\left\{b_{2} c_{2}, \#-b_{1} c_{1}, "\right\} \text {, }
\end{aligned}
$$

the suffixes on the left-band side being always 12 . The letters b, c, d which enter cyclically into these equations are any three of the five letters other than a; the remaining two letters e and f enter symmetrically, for $B E$ is a mere abbreviation for the double triad $B E F . A C D$; and the like for $C E$, and $D E$.

Multiplying these equations by

$$
\frac{b-z \cdot b-w}{b-c \cdot b-d}, \quad \frac{c-z \cdot c-w}{c-d \cdot c-b}, \quad \frac{d-z \cdot d-w}{d-b \cdot d-c}
$$

respectively, and then adding, the right-hand side becomes

$$
=\frac{1}{\theta_{12}}\left\{y-z \cdot y-w \cdot \mathrm{a}_{2} \sqrt{X}-x-z \cdot x-w \cdot \mathrm{a}_{1} \sqrt{Y}\right\}
$$

Writing

$$
\frac{b-z . b-w}{b-c . b-d}=\frac{-1}{c-d . d-b . b-c} \cdot c-d . B_{34}{ }^{2}, \text { etc. }
$$

the left-hand side becomes

$$
=\frac{-A_{12}}{c-d \cdot d-b \cdot b-c}\left\{c-d \cdot B_{34}{ }^{2} \cdot B E_{12} \cdot C_{12} \cdot D_{12}+d-b \cdot C_{34^{2}} \cdot C E_{12} \cdot D_{12} \cdot B_{12}+b-c \cdot D_{33^{2}} \cdot D E_{12} \cdot B_{12} \cdot C_{12}\right\},
$$

which for shortness may be written

$$
=\frac{-A_{12}}{c-d \cdot d-b \cdot b-c} \Sigma\left\{c-d \cdot B_{34^{2}} \cdot B E_{12} \cdot C_{12} \cdot D_{12}\right\}
$$

the summation referring to the three terms obtained by the cyclical interchange of the letters b, c, d. The result thus is

$$
\begin{aligned}
& \frac{1}{\theta_{12}}\left\{y-z \cdot y-w \cdot \mathrm{a}_{2} \sqrt{ } X-x-z \cdot x-w \cdot \mathrm{a}_{1} \sqrt{\bar{Y}}\right\} \\
= & \frac{-A_{12}}{c-d \cdot d-b \cdot b-c} \Sigma\left\{c-d \cdot B_{34^{2}} \cdot B E_{12} \cdot C_{12} \cdot D_{12}\right\} .
\end{aligned}
$$

Interchanging x, y with z, w respectively, we have of course to interchange the suffixes 1,2 and 3,4 ; we thus find

$$
\begin{aligned}
& \frac{1}{\theta_{34}}\left\{w-x \cdot w-y \cdot \mathrm{a}_{4} \sqrt{ } \bar{Z}-z-x \cdot z-y \cdot \mathrm{a}_{3} \sqrt{ } \bar{W}\right\} \\
= & \frac{-A_{34}}{c-d \cdot d-b \cdot b-c} \Sigma\left\{c-d \cdot B_{12}{ }^{2} \cdot B E_{34} \cdot C_{34} \cdot D_{34}\right\},
\end{aligned}
$$

and we hence find the value of $\Omega \cdot x-z . x-w \cdot y-z \cdot y-w$. But $\Omega,=\alpha a^{3}+\beta a^{2}+\gamma a+\delta$, is $=\sqrt{\alpha^{2}-\epsilon^{2}} \cdot A_{12}, A_{24} \cdot A_{86}$: the resulting equation divides by A_{12}, A_{34} : throwing out this factor, we have

$$
\begin{aligned}
& -\frac{\sqrt{a^{2}-\epsilon^{2}}}{\epsilon}(x-z \cdot x-w \cdot y-z \cdot y-w)(c-d \cdot d-b \cdot b-c) A_{36} \\
= & A_{34} \Sigma\left\{c-d \cdot B_{34^{2}} \cdot B E_{12} \cdot C_{19} \cdot D_{12}\right\}+A_{12} \Sigma\left\{c-d \cdot B_{12}{ }^{2} \cdot B E_{34} \cdot C_{34} \cdot D_{34}\right\},
\end{aligned}
$$

where, as before, the summations refer to the three terms obtained by the cyclical interchange of the letters b, c, d; these being any three of the five letters other than a; and the remaining two letters e, f enter into the formula symmetrically. The formula gives thus for $A_{5 s}$ ten values which are of course equal to each other.

Writing for a each letter in succession, we obtain formulæ for each of the six single-letter functions $A_{s b}$ of p and q; and the factor

$$
-\frac{\sqrt{a^{2}-\epsilon^{2}}}{\epsilon}(x-z \cdot x-w \cdot y-z \cdot y-w)
$$

is the same in all the formulæ.
We require further the expressions for the double-letter functions of p, q. Considering for example the function $D E_{58}$, which is

$$
=\frac{1}{\theta_{5 s}}\left\{\sqrt{d_{5} e_{5} f_{5} a_{6} b_{6} c_{6}}-\sqrt{d_{6} e_{6} f_{g} a_{5} b_{5} c_{5}}\right\}
$$

then multiplying by

$$
A_{56} \cdot B_{56} . C_{56},=\sqrt{a_{5} b_{5} c_{5} a_{6} \mathrm{~b}_{6} \mathrm{c}_{6}}
$$

we have

$$
\begin{gathered}
D E_{56} \cdot A_{56} \cdot B_{56} \cdot C_{56}=\frac{1}{\theta_{56}}\left\{\mathrm{a}_{6} \mathrm{~b}_{6} \mathrm{c}_{6} \sqrt{P}-\mathrm{a}_{5} \mathrm{~b}_{5} \mathrm{c}_{5} \sqrt{Q}\right\} \\
=\frac{1}{p-q}\{a-q \cdot b-q \cdot c-q \cdot \sqrt{P}-a-p \cdot b-p \cdot c-p \cdot \sqrt{Q}\},
\end{gathered}
$$

or recollecting that $\epsilon \sqrt{P}, \epsilon \sqrt{Q}$ are $=\alpha p^{3}+\beta p^{2}+\gamma p+\delta$ and $\alpha q^{3}+\beta q^{2}+\gamma q+\delta$ respectively, this is

$$
\epsilon . D E_{56} \cdot A_{56} \cdot B_{56} \cdot C_{56}
$$

$$
=\frac{1}{p-q}\left\{a-q \cdot b-q \cdot c-q \cdot\left(\alpha p^{3}+\beta p^{2}+\gamma p+\delta\right)-a-p \cdot b-p \cdot c-p \cdot\left(\alpha q^{3}+\beta q^{2}+\gamma q+\delta\right)\right\}
$$

Using the well-known identity

$$
\begin{aligned}
a p^{3}+\beta p^{2}+\gamma p+\delta & =\alpha a^{3}+\beta a^{2}+\gamma a+\delta \cdot \frac{b-p \cdot c-p \cdot d-p}{b-a \cdot c-a \cdot d-a} \\
& +\alpha b^{3}+\beta b^{2}+\gamma b+\delta \cdot \frac{c-p \cdot d-p \cdot a-p}{c-b \cdot d-b \cdot a-b} \\
& +\alpha c^{3}+\beta c^{2}+\gamma c+\delta \cdot \frac{d-p \cdot a-p \cdot b-p}{d-c \cdot a-c \cdot b-c} \\
& +\alpha d^{3}+\beta d^{2}+\gamma d+\delta \cdot \frac{a-p \cdot b-p \cdot c-p}{a-d \cdot b-d \cdot c-d}
\end{aligned}
$$

and the like expression for $\alpha q^{3}+\beta q^{2}+\gamma q+\delta$, there will be on the right-hand side terms involving

$$
\alpha a^{3}+\beta a^{2}+\gamma a+\delta, \quad \alpha b^{3}+\beta b^{2}+\gamma b+\delta, \quad \alpha c^{3}+\beta c^{2}+\gamma c+\delta:
$$

but the term in $a d^{3}+\beta d^{2}+\gamma d+\delta$ will disappear of itself.
The term in $\alpha a^{3}+\beta a^{2}+\gamma a+\delta$ is

$$
\frac{1}{p-q} \frac{\alpha a^{3}+\beta a^{2}+\gamma a+\delta}{b-a \cdot c-a \cdot d-a} \cdot b-q \cdot c-q \cdot b-p \cdot c-p \cdot(a-q \cdot d-p-a-p \cdot d-q)
$$

where the expression in () is $=d-a \cdot p-q$: hence the term is

$$
=\frac{\alpha a^{3}+\beta a^{2}+\gamma a+\delta}{b-a \cdot c-a} \cdot b-q \cdot c-q \cdot b-p \cdot c-p
$$

which is

$$
=\frac{a a^{3}+\beta a^{2}+\gamma a+\delta}{b-a \cdot c-a} B_{56}{ }^{2} \cdot C_{56}{ }^{2} .
$$

Forming the two other like terms, the equation is

$$
\begin{aligned}
\epsilon \cdot D E_{56} \cdot A_{56} \cdot B_{56} \cdot C_{56}= & \frac{\alpha a^{3}+\beta a^{2}+\gamma a+\delta}{b-a \cdot c-a} B_{56}{ }^{2} \cdot C_{56}{ }^{2} \\
& +\frac{\alpha b^{3}+\beta b^{2}+\gamma b+\delta}{c-b \cdot a-b} C_{56}{ }^{2} \cdot A_{56}{ }^{2} \\
& +\frac{\alpha c^{3}+\beta c^{2}+\gamma c+\delta}{a-c \cdot b-c} A_{56}{ }^{2} \cdot B_{56}{ }^{2}
\end{aligned}
$$

But the expressions

$$
\alpha a^{3}+\beta a^{2}+\gamma a+\delta, \quad a b^{3}+\beta b^{2}+\gamma b+\delta, \quad a c^{3}+\beta c^{2}+\gamma c+\delta
$$

are

$$
=\sqrt{\alpha^{2}-\epsilon^{2}} A_{12} \cdot A_{34} \cdot A_{56}, \quad \sqrt{\alpha^{2}-\epsilon^{2}} B_{12} \cdot B_{34} \cdot B_{56}, \quad \sqrt{\alpha^{2}-\epsilon^{2}} C_{12} \cdot C_{34} \cdot C_{56},
$$

respectively: the whole equation thus divides by $A_{56} . B_{56} . C_{50}$; throwing out this factor, and then multiplying each side by $-\frac{\sqrt{a^{2}-\epsilon^{2}}}{\epsilon}$, we find

$$
\begin{aligned}
-\frac{\sqrt{a^{2}-\epsilon^{2}}}{\epsilon} D E_{56}=\frac{1}{b-c \cdot c-a \cdot a-b}\left(-\frac{\sqrt{a^{2}-\epsilon^{2}}}{\epsilon}\right)^{2}\{ & b-c \cdot A_{12} \cdot A_{34} \cdot B_{86} \cdot C_{56} \\
& +c-a \cdot B_{12} \cdot B_{34} \cdot C_{56} \cdot A_{56} \\
& \left.+a-b \cdot C_{12} \cdot C_{34} \cdot A_{56} \cdot B_{56}\right\}
\end{aligned}
$$

in which formula if we imagine

$$
-\frac{\sqrt{\alpha^{2}-\epsilon^{2}}}{\epsilon} A_{56}, \quad-\frac{\sqrt{\alpha^{2}-\epsilon^{2}}}{\epsilon} B_{56}, \quad-\frac{\sqrt{\alpha^{2}-\epsilon^{2}}}{\epsilon} C_{56}
$$

each replaced by its value in terms of the $x y$ - and $z w$-functions, we have an equation of the form

$$
-\frac{\sqrt{\alpha^{2}-\epsilon^{2}}}{\epsilon}(x-z \cdot x-w \cdot y-z \cdot y-w) D E_{56}=\frac{1}{x-z \cdot x-w \cdot y-z \cdot y-w} M
$$

where M is a given rational and integral function of the 16 and 16 functions $A_{12}, A B_{12}$ and $A_{34}, A B_{34}$ of x and y and of z and w respectively. The factor

$$
-\frac{\sqrt{a^{2}-\epsilon^{2}}}{\epsilon}(x-z \cdot x-w \cdot y-z \cdot y-w)
$$

is retained on the left-hand side as being the same factor which enters into the equations for A_{56}, etc.: but on the right-hand side $x-z \cdot x-w \cdot y-z \cdot y-w$ should be expressed in terms of the $x y$ - and $z w$-functions. This can be done by means of the identity

$$
x-z \cdot x-w \cdot y-z \cdot y-w=\Sigma \frac{\left|\begin{array}{l}
1, x+y, x y \\
1, z+w, z w \\
1, a+b, a b
\end{array}\right|\left|\begin{array}{l}
1, x+y, x y \\
1, z+w, z w \\
1, a+c, a c
\end{array}\right|}{a-b \cdot a-c}
$$

where the summation refers to the three terms obtained by the cyclical interchange of the letters a, b, c. The first determinant, multiplied by $a-b$, is in fact

$$
=\left|\begin{array}{ll}
a-z \cdot a-w, & a-x \cdot a-y \\
b-z \cdot b-w, & b-x \cdot b-y
\end{array}\right|
$$

and the second determinant, multiplied by $a-c$, is

$$
=\left|\begin{array}{ll}
a-z \cdot a-w, & a-x \cdot a-y \\
c-z \cdot c-w, & c-x \cdot c-y
\end{array}\right|
$$

so that the formula may also be written

$$
x-z \cdot x-w \cdot y-z \cdot y-w=\Sigma \frac{\left|\begin{array}{ll}
a-z \cdot a-w, & a-x \cdot a-y \\
b-z \cdot b-w, & b-x \cdot b-y
\end{array}\right| \cdot\left|\begin{array}{cc}
a-z \cdot a-w, & a-x \cdot a-y \\
c-z \cdot c-w, c-x \cdot c-y
\end{array}\right|}{(a-b)^{2}(a-c)^{2}}
$$

or, what is the same thing, it is

$$
x-z \cdot x-w \cdot y-z \cdot y-w=\Sigma \frac{\left(A_{34}{ }^{2} B_{12}{ }^{2}-A_{12}{ }^{2} B_{34}{ }^{2}\right)\left(A_{34}{ }^{2} C_{12}{ }^{2}-A_{12}{ }^{2} C_{34}{ }^{2}\right)}{(a-b)^{2}(a-c)^{2}},
$$

which is the required expression for $x-z \cdot x-w \cdot y-z \cdot y-w$; the letters a, b, c, which enter into the formula, are any three of the six letters.

As regards the verification of the identity, observe that it may be written

$$
x-z \cdot x-w \cdot y-z \cdot y-w=\Sigma \frac{\{L+M(a+b)+N a b\}\{L+M(a+c)+N a c\}}{a-b \cdot a-c},
$$

where L, M, N are

$$
=(x+y) z w-(z+w) x y, \quad x y-z w, \quad \text { and } \quad z+w-x-y:
$$

this is readily reduced to

$$
x-z \cdot x-w \cdot y-z \cdot y-w=M^{2}-N L
$$

which can be at once verified.

Cambridge, 12th March, 1879.

I take the opportunity of remarking that, in the double-letter formulæ, the sign of the second term is, not as I have in general written it - , but is + ,

$$
A B=\frac{1}{x-y}\left\{\sqrt{\mathrm{abfc}_{1} \mathrm{~d}_{1} \mathrm{e}_{1}}+\sqrt{\mathrm{a}_{1} \mathrm{~b}_{1} \mathrm{f}_{1} \mathrm{cde}}\right\}, \text { etc. }
$$

In fact, introducing a factor ω which is a function of x and y, the odd and even 9 -functions are $=\omega \sqrt{\mathrm{aa}}_{1}$, etc., and

$$
\frac{\omega}{x-y}\left\{\sqrt{\mathrm{abfc}_{1} \mathrm{~d}_{1} \mathrm{e}_{1}}+\sqrt{\mathrm{a}_{1} \mathrm{~b}_{1} \mathrm{f}_{1} \mathrm{cde}}\right\}, \text { etc. }
$$

respectively; ω is a function which on the interchange of x, y changes only its sign; and this being so, then when x and y are interchanged, each single-letter function changes its sign, and each double-letter function remains unaltered.

Cambridge, 29th July, 1879.

