893.

THE BITANGENTS OF THE QUINTIC.

(LETTER FROM PROFESSOR CAYLEY TO MR HEAL.)

[From the Annals of Mathematics, vol. v. (1890), pp. 109, 110.]

Dear Sir,

I have to thank you very much for your letter concerning the bitangents of the quintic, and am glad you have obtained more simple numerical coefficients than you had at first. I do not see my way to verifying your result, but assuming it to be correct, it is a very interesting and valuable one. The relation to Salmon's Higher Plane Curves (p. 351) is rather curious, viz, the result there given is of the deg-order 18-54, with an extraneous factor $(\alpha x+\beta y+\gamma z)^{6}$, the rejection of which would reduce it to the proper form, deg-order 18-48; whereas yours is of deg-order 24-66, with an extraneous factor H^{2}, the rejection of which would reduce it to the same proper form, deg-order 18-48.

But there is another known solution, not by any means a hándy one, but which has no extraneous factor*, viz. if

$$
\Omega=D^{3} H-4 D^{3} H_{1}+6 D^{3} H_{2},
$$

then the required equation is

$$
F \Omega=0,
$$

where the facients of the reciprocant are the first derived functions,
Say this is

$$
\partial_{x} U, \quad \partial_{y} U, \quad \partial_{z} U .
$$

$$
\left(B^{2} C^{2}-\ldots\right)\left(\partial_{x} U\right)^{6}=0 ;
$$

the coefficients A, B, C, \&c., are those of Ω, viz. these are of deg-order $3-6$, and $\partial_{x} U$, \&c., are of deg-order 1-4; so that the deg-order is

$$
4(3-6)+6(1-4)=(12-24)+(6-24)=(18-48),
$$

as it should be. It might be worth while to further consider this form, but I doubt whether, practically, the whole question is not too difficult to be worth working at.

I remain, dear sir, yours very sincerely,

A. CAYLEY.

Cambridge, January 17, 1890.

* See Phil. Trans., vol. cxlix. pp. 193-212, [260].

