895.

A THEOREM ON TREES.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xxiri. (1889), pp. 376-378.]

The number of trees which can be formed with $n+1$ given knots $\alpha, \beta, \gamma, \ldots$ is $=(n+1)^{n-1}$; for instance $n=3$, the number of trees with the 4 given knots α, β, γ, δ is $4^{2}=16$, for in the first form shown in the figure the $\alpha, \beta, \gamma, \delta$ may be arranged

in 12 different orders ($\alpha \beta \gamma \delta$ being regarded as equivalent to $\delta \gamma \beta \alpha$), and in the second form any one of the 4 knots $\alpha, \beta, \gamma, \delta$ may be in the place occupied by the α : the whole number is thus $12+4,=16$.

Considering for greater clearness a larger value of n, say $n=5$, I state the particular case of the theorem as follows:
No. of trees $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta)=$ No. of terms of $(\alpha+\beta+\gamma+\delta+\epsilon+\zeta)^{4} \alpha \beta \gamma \delta \epsilon \zeta,=6^{4},=1296$, and it will be at once seen that the proof given for this particular case is applicable for any value whatever of n.

I use for any tree whatever the following notation: for instance, in the first of the forms shown in the figure, the branches are $\alpha \beta, \beta \gamma, \gamma \delta$; and the tree is said to be $\alpha \beta^{2} \gamma^{2} \delta$ (viz. the knots α, δ occur each once, but β, γ each twice); similarly in the second of the same forms, the branches are $\alpha \beta, \alpha \gamma, \alpha \delta$, and the tree is said
to be $\alpha^{3} \beta \gamma \delta$ (viz. the knot α occurs three times, and the knots β, γ, δ each once). And so in other cases.

This being so, I write

$$
\left.\begin{array}{rlr}
(\alpha+\beta+\gamma+\delta+\epsilon+\zeta)^{4} \alpha \beta \gamma \delta \epsilon \zeta & =1 \alpha^{4} & 6 \\
& +4 \alpha^{3} \beta & 30 \\
& +6 \alpha^{2} \beta^{2} & 15 \\
& +12 \alpha^{2} \beta \gamma & 60 \\
& +24 & \alpha \beta \gamma \delta \\
15
\end{array}\right\} \alpha \beta \gamma \delta \epsilon \zeta ; \quad 90
$$

where the numbers of the left-hand column are the polynomial coefficients for the index 4 ; and the numbers of the right-hand column are the numbers of terms of the several types, 6 terms $\alpha^{4}, 30$ terms $\alpha^{3} \beta, 15$ terms $\alpha^{2} \beta^{2}$, \&c.: the products of the corresponding terms of the two columns give the outside column 6, 120, 90 , \&c.; and the sum of these numbers is of course $6^{4},=1296$.

It is to be shown that we have
1 tree $\alpha^{4} \cdot \alpha \beta \gamma \delta \epsilon \zeta\left(=\alpha^{5} \beta \gamma \delta \epsilon \zeta\right) ; 4$ trees $\alpha^{3} \beta \cdot \alpha \beta \gamma \delta \epsilon \zeta\left(=\alpha^{4} \beta^{2} \gamma \delta \epsilon \zeta\right), \ldots$,
24 trees $\alpha \beta \gamma \delta . \alpha \beta \gamma \delta \epsilon \zeta\left(=\alpha^{2} \beta^{2} \gamma^{2} \delta^{2} \epsilon \zeta\right)$:
for this being so, then by the mere interchange of letters, the numbers $1,4,6, \ldots$ of the left-hand column have to be multiplied by the numbers $6,30,15, \ldots$ of the right-hand column, and we have the numbers in the outside column, the sum of which is $=1296$ as above.
. Start with the last term $\alpha \beta \gamma \delta . \alpha \beta \gamma \delta \epsilon \zeta,=\alpha^{2} \beta^{2} \gamma^{2} \delta^{2} \epsilon \zeta$. We have the trees

$$
\epsilon \alpha \beta \gamma \delta \zeta(=\epsilon \alpha \cdot \alpha \beta \cdot \beta \gamma \cdot \gamma \delta \cdot \delta \zeta),
$$

where the $\alpha, \beta, \gamma, \delta$ may be written in any one of the 24 orders, and the number of such trees is thus $=24$. If we consider only the 12 orders ($\alpha \beta \gamma \delta$ being regarded as equivalent to $\delta \gamma \beta \alpha$), then the ϵ, ζ may be interchanged; and the number is thus $2 \times 12,=24$ as before.

Now for the δ of $\alpha \beta \gamma \delta$ substitute α, or consider the form $\alpha \beta \gamma \alpha, \alpha \beta \gamma \delta \epsilon \zeta,=\alpha^{3} \beta^{2} \gamma^{2} \delta \epsilon \zeta$. We see at once in the form $\epsilon \alpha \cdot \alpha \beta \cdot \beta \gamma \cdot \gamma \delta \cdot \delta \zeta$, which one it is of the two δ 's that must be changed into α : in fact, changing the first δ, we should have $\epsilon \alpha \cdot \alpha \beta \cdot \beta \gamma \cdot \gamma \alpha \cdot \delta \zeta$ which contains a circuit $\alpha \beta \gamma$, and a detached branch $\delta \zeta$, and is thus not a tree: changing the second δ, we have $\epsilon \alpha \cdot \alpha \beta \cdot \beta \gamma \cdot \gamma \delta \cdot \alpha \zeta$ which is a tree $\alpha^{3} \beta^{2} \gamma^{2} \delta \epsilon \zeta$, $=\alpha \zeta \cdot \alpha \epsilon \cdot \alpha \beta \cdot \beta \gamma \cdot \gamma \delta$. And similarly for any other order of the $\alpha \beta \gamma \delta$, there is in each case only one of the δ 's which can be changed into α; and thus from each of the 24 forms we obtain a tree $a^{3} \beta^{2} \gamma^{2} \delta \epsilon \zeta$. But dividing the 24 forms into the $12+12$ forms corresponding to the interchange of the letters ϵ, ζ, then the first 12 forms, and the second 12 forms, give each of them the same trees $\alpha^{3} \beta^{2} \gamma^{2} \delta \epsilon \zeta$; and the number of these trees is thus $\frac{1}{2} \cdot 24,=12$.

And in like manner reducing the $\alpha \beta \gamma \delta$ to $\alpha^{2} \beta^{2}, \alpha^{3} \beta$ or α^{4}, we obtain in each case the number of trees equal to the proper sub-multiple of 24 , viz. $6,4,1$ in the three cases respectively (for the last case this is obvious, viz. there is $\mathbf{1}$ tree $\left.\alpha^{5} \beta \gamma \delta \epsilon \zeta,=\alpha \beta \cdot \alpha \gamma, \alpha \delta, \alpha \epsilon, \alpha \zeta\right)$; and the subsidiary theorem is thus proved. Hence the original theorem is true: as already remarked, it is easy to see that the proof is perfectly general.

The theorem is one of a set as follows:
Let $(\lambda, \alpha, \beta, \gamma, \ldots)$ denote as above the trees with the given knots $\lambda, \alpha, \beta, \gamma, \ldots$; $(\lambda+\mu, \alpha, \beta, \gamma, \ldots)$ the pairs of trees with the given knots $\lambda, \mu, \alpha, \beta, \gamma, \ldots$, the knots λ, μ belonging always to different trees; $(\lambda+\mu+\nu, \alpha, \beta, \gamma, \ldots)$ the triads of trees with the given knots $\lambda, \mu, \nu, \alpha, \beta, \gamma, \ldots$, the knots λ, μ, ν always belonging to different trees; and so on: then if $i+1$ be the number of the knots $\lambda, \mu, \nu, \ldots$, and n the number of the knots $\alpha, \beta, \gamma, \ldots$, the number of trees or pairs, or triads, \&c., of trees is $=(i+1)(i+n+1)^{n-1}$. In particular, if $i=0$, then n being the number of knots $\alpha, \beta, \gamma, \ldots$, and therefore $n+1$ the whole number of knots $\lambda, \alpha, \beta, \gamma, \ldots$, the number of trees is $=(n+1)^{n-1}$ as before.

As a simple example, consider the pairs $(\lambda+\mu, \alpha, \beta)$: here $i=1, n=2$, and we have $(i+1)(i+n+1)^{n-1}=2.4,=8$: in fact, the pairs of trees are

$$
\begin{aligned}
& (\lambda \alpha, \alpha \beta, \mu),(\lambda \beta, \beta \alpha, \mu),(\lambda \alpha, \lambda \beta, \mu) \\
& (\mu \alpha, \alpha \beta, \lambda),(\mu \beta, \beta \alpha, \lambda),(\mu \alpha, \mu \beta, \lambda) ;(\lambda \alpha, \mu \beta),(\lambda \beta, \mu \alpha) .
\end{aligned}
$$

We may arrange the trees $(\alpha, \beta, \gamma, \delta, \epsilon)$ as follows:

$$
\begin{array}{rlrrr}
(\alpha, \beta, \gamma, \delta, \epsilon)= & \alpha \beta & (\beta, \gamma, \delta, \epsilon) ; & 125= & 4 \times 1.4^{2}=64 \\
& +\alpha \beta \cdot \alpha \gamma & (\beta+\gamma, \delta, \epsilon) & +6 \times 2.4^{1} & 48 \\
& +\alpha \beta \cdot \alpha \gamma \cdot \alpha \delta & (\beta+\gamma+\delta, \epsilon) & +4 \times 3.4^{\circ} & 12 \\
& +\alpha \beta \cdot \alpha \gamma \cdot \alpha \delta \cdot \alpha \epsilon & & +1 & \frac{1}{125}
\end{array}
$$

viz. to obtain the trees $(\alpha, \beta, \gamma, \delta, \epsilon)$, we join on the branch $\alpha \beta$ to any tree $(\beta, \gamma, \delta, \epsilon)$: the branches $\alpha \beta$, $\alpha \gamma$ to any pair of trees $(\beta+\gamma, \delta, \epsilon)$; the branches $\alpha \beta, \alpha \gamma, \alpha \delta$ to any triad of trees $(\beta+\gamma+\delta, \epsilon)$; and take lastly the tree $\alpha \beta . \alpha \gamma, \alpha \delta, \alpha \epsilon$: the knots $\beta, \gamma, \delta, \epsilon$ being then interchanged in every possible manner. The whole number of trees 125 is thus obtained as $=64+48+12+1$; the theorem is of course perfectly general.

The foregoing theory in effect presents itself in a paper by Borchardt, "Ueber eine der Interpolation entsprechende Darstellung der Eliminations-Resultante," Crelle, t. LVII. (1860), pp. 111-121, viz. Borchardt there considers a certain determinant, composed of the elements $10,12, \ldots, 1 n, 20,21,23, \ldots, 2 n, \ldots, n 0, n 1, \ldots, n n-1$, and represented by means of the trees $(0,1,2, \ldots, n)$; the branches of the tree being the aforesaid elements, and the tree being regarded as equal to the product of the several branches: the number of terms of the determinant is thus $=(n+1)^{n-1}$ as above.

