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1 . Motivation and Background

Shape-memory alloys (SMAs) belong to the class of so-called smart materials which have wide range of im-
portant applications, especially in aerospace or mechanical engineering and human medicine. SMAs exhibit
specific hysteretic stress/stain/temperature response, which is called a shape-memory effect or pseudoelasticity.
The mechanism behind this behavior is connected with the so-called martensitic phase transformation; the ma-
terial can exist in different phases which are separeted by a thin transition layer which stores a specific amount
of interfacial energy; see e.g. [4].

Many interesting applications call for finite-strain models of SMAs which brings, however, many mathematical
difficulties not presented in the small-strain regime. In particular, the constrain of local non-interpenetration
of matter that involves determinant of deformation gradient and hence excludes convex or quasiconvex energies.
The concept of polyconvexity, that allows for satisfactory existence theory for many hyperelastic solids, does
not apply, however, for SMAs due to the presence of multiple stable phases.

One possible solution, c.f [1,2], consists in regularizing via the second gradient of deformation in which the en-
ergy is convex. This option corresponds to including interfacial energy effect that penalizes rapid spatial oscil-
lations of deformation gradient (i.e. oscillations of phases). The resulting model falls into the class of so-called
non-simple materials that, in comparison with 1st-gradient theories, allow for a wider class of possible bound-
ary conditions; see [6].

2 . Results

We consider interfacial energy of a different form, based on the concept of gradient polyconvexity, recently
introduced in the context of hyperelastic materials in [3]:
Definition (Gradient Polyconvexity). Let Ŵ : R3×3×R3×3×3×R3 → R∪{+∞} be a lower semicontinuous
function. The functional

I(y) =

∫

Ω
Ŵ (∇y,∇[Cof∇y],∇[det∇y]) dx,(1)

defined for any measurable function y : Ω → R3 for which the weak derivatives ∇y, ∇[Cof∇y], ∇[det∇y]
exist and are integrable, is called gradient polyconvex on a domain Ω ⊂ R3 (or gradient polyconvex for short)
if the function Ŵ (F, ·, ·) is convex for every F ∈ R3×3.

Here Ŵ stands for stored energy density which is up to a multiplication by material density an isothermal
restriction of Helmholtz free energy. Since determinant and cofactor measure the transformation of volumes
and surfaces, respectively, the energy penalizes abrupt changes of these quantities. As opposed to the afore-
mentioned approach that supposes coercivity of the energy in |∇2y|p, for some p ≥ 1, here only coercivity
in |∇[Cof∇y]|q, for proper q, is assumed. As a consequence, the deformation y needs not to lie in Sobolev
space W 2,p(Ω,R3). Indeed, for any p ≥ 1 there exists a function (c.f. [3])

y ∈W 1,p(Ω;R3) ∩ L∞(Ω;R3) \W 2,1(Ω;R3)
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such that

0 < det∇y ∈W 1,∞(Ω) and Cof∇y ∈W 1,∞(Ω;R3×3).

Hence, the gradient polyconvexity allows for existence theory with weaker regularity assumptions on defor-
mation. Moreover, since Cof∇y ∈ W 1,q, its boundary value (and therefore the outer normal in deformed
configuration) is well defined . In addition, the regularity still suffice for proving physically desirable prop-
erties of deformation such as local invertibility (det∇y > 0) or global injectivity. Besides, the integrability
of det2∇y in a Sobolev space W 1,r(Ω) is obtained for an appropriate r ≥ 1. Concerning the modeling as-
pect of view, this special energy’s dependence on the second gradient of deformation leads to a different form
of hyperstress, a generalized form of stress occurring in higher-order gradient theories.

In a forthcoming paper, we extend the previous result for static problems in hyperelasticity to inelastic, isother-
mal processes. We treat the phase transformation as a dissipative rate-independent process, which is a justified
assumption for many situations; see e.g. [7, 8]. We prove existence of Energetic-solution (c.f. [5] for a defini-
tion) driven by the Gibbs-type stored-energy potential E and the Rayleigh-type dissipation-energy pseudopo-
tentialR; i.e. the activation criterion for the phase-transformation is purely energetic. We suppose that the state
of the system is described, besides deformation y, by so-called internal variable z, denoting the vector of vol-
ume fractions of individual phases. The vector is determined by deformation gradient via a continuous mapping
λ : R3×3 → Rl, where l ∈ N stands for the number of phases. The Gibbs-type potential is of the form

E(t, y, z) =

{
I(y)− 〈`(t), y〉 if z = λ(∇y) a.e. in Ω,
+∞ otherwise,

where t denotes time, I is as in (1) and `(t) is a continuous linear functional of external forces at time t.
Note that the functional depends on time only through loading `(t), since we do not consider time-dependent
Dirichlet data; nevertheless these can be effectively approximated by a penalty in Neumann boundary condition.
The dissipation pseudopotential takes the form

R(ż) = c

∫

Ω
|ż|dx,

where c > 0 is tightly related to the amount of energy dissipated by the phase change. This specific choice
of potentials E andR is a straightforward modification of the model summarized e.g. in [5].
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[7] T. Roubíček. Models of microstructure evolution in shape memory alloys. In P. Ponte Castañeda, J. J. Telega,

and B. Gambin, editors, Nonlinear Homogenization and its Applications to Composites, Polycrystals and Smart
Materials, pages 269–304, Dordrecht, 2005. Springer Netherlands.

[8] S. Stupkiewicz and H. Petryk. Modelling of laminated microstructures in stress-induced martensitic transformations.
Journal of the Mechanics and Physics of Solids, 50(11):2303 – 2331, 2002.

Session: Elasticity, plasticity and phase transition Abstract P126

35
http://rcin.org.pl




