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ON LATIN SQUARES.

[From the Messenger of Mathematics, vol. xIx. (1890), pp. 135—137.]

If in each line of a square of n2 compartments the same n letters a, b, c, ... 
are arranged so that no letter occurs twice in the same column, we have what was 
termed by Euler “ a Latin square.” Supposing that in one of the lines the letters 
are arranged in the natural order abcde..., then in the remaining lines there must 
be arrangements beginning with b, c, d, e, &c., respectively, and we may consider the 
case in which the bottom line has the arrangement abcde..., and in the other lines, 
reckoning from the bottom one in order, the arrangements begin with b, c, d, e, &c., 
respectively: if the number of such squares be = N, then, obviously, the whole number 
of squares which can be formed with the same n arrangements is =N[n]n.

Starting with the bottom line as above, then it is a well-known problem to 
determine the number of arrangements for the second line; viz. this number is 

and if we assume, as above, that the second line begins with b, then the whole 
number of arrangements is this number divided by (n — 1), the quotient being of course 
integral. For instance, when n = 5, the number is =120— 120 + 60 — 20 + 5 — 1, = 44, 
which is divisible by 4, and the number of arrangements for the second line is thus 
= 11.

But the number of arrangements for the third line will be different according to 
the arrangement selected for the second line, and it is not easy to see how in general 
the whole number of arrangements for the third line is to be calculated, and the 
difficulty of course increases for the next following lines; it may be remarked that, 
when all the lines are filled up except the top-line, the top-line is completely determined.
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Imagine the square completed: we may write down the substitutions by which 

we pass from the bottom line to itself (this is of course the substitution 1) and to 
each of the other lines respectively; we have thus a set of n substitutions, which 
may form a group; and when this is so, we may conversely from the group construct 
the Latin square. But it is not every Latin square which is thus connected with a 
group of n substitutions.

In the cases n = 2, 3, 4 there is no difficulty; the squares are 

viz. when n=2 the number is 1, when n=3 it is 1, when n = 4 it is 4; in this 
last case, the arrangement badc for the second line gives two squares, but each 
of the other arrangements only one square.

In each of the squares of 4, we have a group, viz. for the four squares respectively, 
these are 

l0, 30, 40 are the cyclical groups of (acbd), (abdc), and (abcd), respectively; 20 is a 
different kind of group.

In the case when n = 5, the whole number of squares is 56; viz. there are five 
arrangements of the second line each giving four squares, and six arrangements each 
giving six squares, 5.4 + 6.6 = 56. The five arrangements are 

viz. in these cases, the substitutions for passing to the second line are (ab) (ced) 
(ab) (cde), (abc) (de), (abd) (ce), (abe) (cd), respectively.

The six arrangements are 

viz. in these cases, the substitutions for passing to the second line are (abdec), (abedc), 
(abced), (abecd), (abcde), (abdce), respectively.
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A set of four squares is 

and a set of six squares is

In a square belonging to a set of four, the substitutions for obtaining from any 
one line all the other lines are of a form such as 1, (ab) (ced), (ac) (bde), (ad) (bec), 
(ae) (bcd), which are not a group. In the case of a set of six squares, there is one 
square of the set (in the foregoing instance the first square) where the substitutions 
are of a form such as 1, (abdec), (acedb), (adceb), (aebcd), and which thus form a 
cyclical group of five substitutions.

C. XIII. 8
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