905.

ON THE EQUATION $x^{17} - 1 = 0$.

[From the Messenger of Mathematics, vol. XIX. (1890), pp. 184-188.]

WRITING $\rho = \cos \frac{2\pi}{17} + i \sin \frac{2\pi}{17}$, I carry the solution up to the determination of the periods each of two roots, $\rho + \rho^{16}$, $= 2 \cos \frac{2\pi}{17}$, &c. The expressions contain the radicals

 $a = \sqrt{(17)}, \quad b = \sqrt{\{2(17-a)\}}, \quad c = \sqrt{\{4(17+3a)-2(3+a)b\}},$

where a, b, c are taken to be positive $(a = 4\cdot 12, b = 5\cdot 07, c = 6\cdot 72)$. Taking for a moment r to be any imaginary seventeenth root, $r = \rho^{\theta}$, then the algebraical expression for the period P_1 of eight roots is $P_1 = \frac{1}{2}(-1 \pm a)$, but I assume the value to be $P_1 = \frac{1}{2}(-1 + a)$, and thus determine θ to denote some one of the values 1, 2, 4, 8, 9, 13, 15, 16; similarly, I assume the value of Q_1 to be $= \frac{1}{4}(-1 + a + b)$; and thus further determine θ to denote some one of the values 1, 4, 13, 16: and, again, I assume the value of R_1 to be $= \frac{1}{8}(-1 + a + b + c)$, and thus further determine θ to denote one of the values 1 and 16. As regards the values of the periods R, it is obviously indifferent which value is taken, and I assume therefore $\theta = 1$. This comes to saying that the signs of the radicals are determined in suchwise that r shall denote the root $\cos \frac{2\pi}{17} + i \sin \frac{2\pi}{17}$; and it is to be understood that r has this value.

I write now

$$\begin{split} P_1 &= r + r^9 + r^{13} + r^{15} + r^{16} + r^8 + r^4 + r^2, \\ P_2 &= r^3 + r^{10} + r^5 + r^{11} + r^{14} + r^7 + r^{12} + r^6, \\ Q_1 &= r + r^{13} + r^{16} + r^4, \\ Q_2 &= r^9 + r^{15} + r^8 + r^2, \\ Q_3 &= r^3 + r^5 + r^{14} + r^{12}, \\ Q_4 &= r^{10} + r^{11} + r^7 + r^6, \\ R_1 &= r + r^{16}, \\ R_2 &= r^9 + r^8 + r^8 \end{split}$$

www.rcin.org.pl

and moreover

$$\begin{split} R_4 &= r^{15} + r^2, \\ R_5 &= r^3 + r^{14}, \\ R_6 &= r^5 + r^{12}, \\ R_7 &= r^{10} + r^7, \\ R_8 &= r^{11} + r^6, \\ a &= P_1 - P_2, \\ b &= 2 \; (Q_1 - Q_2), \\ + \; b_1 &= 2 \; (Q_3 - Q_4), \\ c &= 4 \; (R_1 - R_2), \\ - \; c_1 &= 4 \; (R_3 - R_4), \\ + \; c_2 &= 4 \; (R_5 - R_6), \\ - \; c_3 &= 4 \; (R_7 - R_8). \end{split}$$

It will appear by what follows that a is determined by the quadric equation $a^2 = 17$, but I have assumed that a denotes the positive root $a = \sqrt{(17)}$; similarly, b is determined by the quadric equation $b^2 = 2(17 - a)$, but it is assumed that b denotes the positive root, $b = \sqrt{\{2(17 - a)\}}$; and c is determined by the quadric equation $c^2 = 4(17 + 3a) - 2(3 + a)b$, but it is assumed that c denotes the positive root,

$$c = \sqrt{\{4(17 + 3a) - 2(3 + a)b\}}.$$

If in the equations I had written b_1 , c_1 , c_2 , c_3 , instead of $+b_1$, $-c_1$, $+c_2$, $-c_3$, then b_1 comes out rationally in terms of a, b; and c_1 , c_2 , c_3 come out rationally in terms of a, b, c; the signs were attached to them a posteriori, in suchwise that the values of b_1 , c_1 , c_2 , c_3 might be each of them positive; for their independent determination, we have, in fact, for b_1^2 an expression such as that for b^2 ; and for c_1^2 , c_2^2 , c_3^2 expressions such as that for c^2 ; and taking as above for each of them the positive value of the square root, we have

$a = \sqrt{(17)},$	(=	4.12),
$b = \sqrt{\{2 (17 - a)\}},$	(=	5.07),
$b_1 = \sqrt{\{2 \ (17 + a)\}},$	(=	6.49),
$c = \sqrt{\{4(17+3a)-2(3+a)b\}},$	(=	6.72),
$c_1 = \sqrt{\{4 (17 + 3a) + 2 (3 + a) b\}},$	(=]	13.77),
$c_2 = \sqrt{\{4 (17 - 3a) + 2 (-3 + a) b_1\}},$	(=	5.75),
$c_3 = \sqrt{\{4 (17 - 3a) - 2 (-3 + a) b_1\}},$	(=	2.02).

The relations between the periods P are

$$\begin{array}{c|c} P_{1} + P_{2} = -1, \\ P_{1} & P_{2} & a \\ \hline P_{1} & -P_{1} + 4 & -4 \\ P_{2} & -P_{2} + 4 & a & 17 \\ \hline \end{array}$$

www.rcin.org.pl

ON THE EQUATION $x^{17} - 1 = 0$.

that is,

$$P_1^2 = -P_1 + 4$$
, &c. $a^2 = 17$.

Here for the second square, we have

 $a^2 = (P_1 - P_2)^2 = P_1^2 + P_2^2 - 2P_1P_2 = (-P_1 + 4) + (-P_2 + 4) + 8, = -P_1 - P_2 + 16, = 17;$ and similarly in the other cases which follow.

 $Q_1 + Q_2 = P_1$

For the periods Q, we have

		$Q_3 + Q_4$	$= \Gamma_2,$	
	Q_1	Q_2	Q_3	Q_4
Q_2 +	$-2Q_3 + 4$	-1 .	$2Q_1 + Q_2 + Q_4$	$Q_2 + Q_3 + 2Q_3$
		$Q_1 + 2Q_4 + 4$	$Q_1 + 2Q_3 + 4$	$Q_1 + 2Q_2 + Q_3$
			$2Q_2 + Q_4 + 4$	- 1
	sector fit	Recip with the	and tacharts	$2Q_1 + Q_3 + 4$

	Ъ	b_1		
Ъ	34-2a	8a		
<i>b</i> ₁		34 + 2a		

so that $bb_1 = 8a$, or b_1 is given rationally in terms of a, b.

And for the periods R, we have

$$egin{aligned} R_1 + R_2 &= Q_1, \ R_3 + R_4 &= Q_2, \ R_5 + R_6 &= Q_3, \ R_7 + R_8 &= Q_4, \end{aligned}$$

	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8
R_1	$R_4 + 2$	$\overline{R_5 + R_6}$	$R_{3} + R_{7}$	$R_1 + R_5$	$R_2 + R_4$	$R_2 + R_8$	$R_3 + R_8$	$R_6 + R_7$
R_2	R	$R_{3} + 2$	$R_2 + R_6$	$R_4 + R_8$	$R_1 + R_7$	$R_1 + R_3$	$R_{5} + R_{8}$	$R_{4} + R_{7}$
R_3		10.24	$R_1 + 2$	$\overline{R_7 + R_8}$	$R_{6} + R_{8}$	$R_{2} + R_{5}$	$R_1 + R_4$	$R_4 + R_5$
R_4				$R_{2} + 2$	$R_{1} + R_{6}$	$R_{5} + R_{7}$	$R_3 + R_6$	$R_{2} + R_{3}$
R_5					$R_{8} + 2$	$\overline{R_3 + R_4}$	$R_{2} + R_{7}$	$R_{3} + R_{5}$
R_6		1.14		19.44		$R_{7} + 2$	$R_{4} + R_{6}$	$R_1 + R_8$
R_7	•					1 6 m /2.	$R_{5} + 2$	$\overline{R_1 + R_2}$
R_8		1			r. n.		i.e.	$R_3 + 2$

www.rcin.org.pl

[905

62

	С	c_1	c_2	c_3
	4(17+3a)-2(3+a)b	$8(b+b_1)$	$4 (2a - b + b_1)$	$4(-2a+b+b_1)$
		4(17+3a)+2(3+a)b	$4(2a+b+b_1)$	$4(2a+b-b_1)$
2		an and man and an	$4(17 - 3a) + 2(-3 + a)b_1$	$8(-b+b_1)$
				$4(17-3a)-2(-3+a)b_1$

where observe that the overlined terms $R_5 + R_6$, $R_7 + R_8$, $R_3 + R_4$, and $R_1 + R_2$, have the values Q_4 , Q_3 , Q_2 , Q_1 , respectively, and in the last table b_1 may be considered as denoting its value $=\frac{8a}{b}$, so that c_1 , c_2 , c_3 are each given rationally in terms of a, b, c.

And from the foregoing results, we have

$$\begin{split} P_1 &= \frac{1}{2} \left(-1 + a \right), &= 1.56, \\ P_2 &= \frac{1}{2} \left(-1 - a \right), &= -2.56, \\ Q_1 &= \frac{1}{4} \left(-1 + a + b \right), &= 2.05, \\ Q_2 &= \frac{1}{4} \left(-1 + a - b \right), &= -0.49, \\ Q_3 &= \frac{1}{4} \left(-1 - a + b_1 \right), &= 0.34, \\ Q_4 &= \frac{1}{4} \left(-1 - a - b_1 \right), &= -2.90, \\ R_1 &= \frac{1}{8} \left(-1 + a + b + c \right), &= 1.87, \\ R_2 &= \frac{1}{8} \left(-1 + a + b - c \right), &= 0.18, \\ R_3 &= \frac{1}{8} \left(-1 + a - b - c_1 \right), &= -1.96, \\ R_4 &= \frac{1}{8} \left(-1 - a + b_1 + c_2 \right), &= 0.89, \\ R_6 &= \frac{1}{8} \left(-1 - a - b_1 - c_2 \right), &= -0.55, \\ R_7 &= \frac{1}{8} \left(-1 - a - b_1 - c_3 \right), &= -1.70, \\ R_8 &= \frac{1}{8} \left(-1 - a - b_1 + c_2 \right), &= -1.20. \end{split}$$

The approximate numerical values have been given throughout only for the purpose of showing that the signs of the square roots have been rightly determined.

0

C

C

C

63

www.rcin.org.pl