905.

ON THE EQUATION $x^{17}-1=0$.

[From the Messenger of Mathematics, vol. xix. (1890), pp. 184-188.]
Writing $\rho=\cos \frac{2 \pi}{17}+i \sin \frac{2 \pi}{17}$, I carry the solution up to the determination of the periods each of two roots, $\rho+\rho^{16},=2 \cos \frac{2 \pi}{17}, \& c$. The expressions contain the radicals

$$
a=\sqrt{ }(17), \quad b=\sqrt{ }\{2(17-a)\}, \quad c=\sqrt{ }\{4(17+3 a)-2(3+a) b\},
$$

where a, b, c are taken to be positive $(a=4 \cdot 12, b=5.07, c=6.72)$. Taking for a moment r to be any imaginary seventeenth root, $r=\rho^{\theta}$, then the algebraical expression for the period P_{1} of eight roots is $P_{1}=\frac{1}{2}(-1 \pm a)$, but I assume the value to be $P_{1}=\frac{1}{2}(-1+a)$, and thus determine θ to denote some one of the values $1,2,4,8$, $9,13,15,16$; similarly, I assume the value of Q_{1} to be $=\frac{1}{4}(-1+a+b)$; and thus further determine θ to denote some one of the values $1,4,13,16$: and, again, I assume the value of R_{1} to be $=\frac{1}{8}(-1+a+b+c)$, and thus further determine θ to denote one of the values 1 and 16. As regards the values of the periods R, it is obviously indifferent which value is taken, and I assume therefore $\theta=1$. This comes to saying that the signs of the radicals are determined in suchwise that r shall denote the root $\cos \frac{2 \pi}{17}+i \sin \frac{2 \pi}{17}$; and it is to be understood that r has this value.

I write now

$$
\begin{aligned}
& P_{1}=r+r^{9}+r^{13}+r^{15}+r^{16}+r^{8}+r^{4}+r^{2}, \\
& P_{2}=r^{3}+r^{10}+r^{5}+r^{11}+r^{14}+r^{7}+r^{12}+r^{6}, \\
& Q_{1}=r+r^{13}+r^{16}+r^{4}, \\
& Q_{2}=r^{9}+r^{15}+r^{8}+r^{2}, \\
& Q_{3}=r^{3}+r^{5}+r^{14}+r^{12}, \\
& Q_{4}=r^{10}+r^{11}+r^{7}+r^{6}, \\
& R_{1}=r+r^{16}, \\
& R_{2}=r^{13}+r^{4}, \\
& R_{3}=r^{9}+r^{8},
\end{aligned}
$$

$$
\begin{aligned}
& R_{4}=r^{15}+r^{2}, \\
& R_{5}=r^{3}+r^{4,4}, \\
& R_{\mathrm{s}}=r^{5}+r^{12}, \\
& R_{7}=r^{10}+r^{7}, \\
& R_{8}=r^{11}+r^{6},
\end{aligned}
$$

and moreover

$$
\begin{aligned}
a & =P_{1}-P_{2}, \\
b & =2\left(Q_{1}-Q_{2}\right), \\
+b_{1} & =2\left(Q_{3}-Q_{4}\right), \\
c & =4\left(R_{1}-R_{2}\right), \\
-c_{1} & =4\left(R_{3}-R_{4}\right), \\
+c_{2} & =4\left(R_{5}-R_{6}\right), \\
-c_{3} & =4\left(R_{7}-R_{8}\right) .
\end{aligned}
$$

It will appear by what follows that a is determined by the quadric equation $a^{2}=17$, but I have assumed that a denotes the positive root $a=\sqrt{ }(17)$; similarly, b is determined by the quadric equation $b^{2}=2(17-a)$, but it is assumed that b denotes the positive root, $b=\sqrt{ }\{2(17-a)\}$; and c is determined by the quadric equation $c^{2}=4(17+3 a)-2(3+a) b$, but it is assumed that c denotes the positive root,

$$
c=\sqrt{ }\{4(17+3 a)-2(3+a) b\} .
$$

If in the equations I had written $b_{1}, c_{1}, c_{2}, c_{3}$, instead of $+b_{1},-c_{1},+c_{2},-c_{3}$, then b_{1} comes out rationally in terms of a, b; and c_{1}, c_{2}, c_{3} come out rationally in terms of a, b, c; the signs were attached to them \grave{a} posteriori, in suchwise that the values of $b_{1}, c_{1}, c_{2}, c_{3}$ might be each of them positive; for their independent determination, we, have, in fact, for $b_{1}{ }^{2}$ an expression such as that for b^{2}; and for $c_{1}{ }^{2}, c_{2}{ }^{2}, c_{3}{ }^{2}$ expressions such as that for c^{2}; and taking as above for each of them the positive value of the square root, we have

$$
\begin{array}{ll}
a=\sqrt{ }(17), & (=4 \cdot 12), \\
b=\sqrt{ }\{2(17-a)\}, & (=5 \cdot 07), \\
b_{1}=\sqrt{ }\{2(17+a)\}, & (=6 \cdot 49), \\
c=\sqrt{ }\{4(17+3 a)-2(3+a) b\}, & (=6 \cdot 72), \\
c_{1}=\sqrt{ }\{4(17+3 a)+2(3+a) b\}, & (=13 \cdot 77), \\
c_{2}=\sqrt{ }\left\{4(17-3 a)+2(-3+a) b_{1}\right\}, & (=5 \cdot 75), \\
c_{3}=\sqrt{ }\left\{4(17-3 a)-2(-3+a) b_{1}\right\}, & (=2 \cdot 02) .
\end{array}
$$

The relations between the periods P are

$$
P_{1}+P_{2}=-1,
$$

that is,

$$
P_{1}{ }^{2}=-P_{1}+4, \& c . ; a^{2}=17
$$

Here for the second square, we have

$$
a^{2}=\left(P_{1}-P_{2}\right)^{2}=P_{1}^{2}+P_{2}^{2}-2 P_{1} P_{2}=\left(-P_{1}+4\right)+\left(-P_{2}+4\right)+8,=-P_{1}-P_{2}+16,=17
$$

and similarly in the other cases which follow.
For the periods Q, we have

$$
\begin{aligned}
& Q_{1}+Q_{2}=P_{1} \\
& Q_{3}+Q_{4}=P_{2}
\end{aligned}
$$

so that $b b_{1}=8 a$, or b_{1} is given rationally in terms of a, b.
And for the periods R, we have

$$
\begin{aligned}
& R_{1}+R_{2}=Q_{1}, \\
& R_{3}+R_{4}=Q_{2}, \\
& R_{5}+R_{6}=Q_{3}, \\
& R_{7}+R_{8}=Q_{4},
\end{aligned}
$$

	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	R_{7}	R_{8}
R_{1}	$R_{4}+2$	$\overline{R_{5}+R_{6}}$	$R_{3}+R_{7}$	$R_{1}+R_{5}$	$R_{2}+R_{4}$	$R_{2}+R_{8}$	$R_{3}+R_{8}$	$R_{6}+R_{7}$
R_{2}		$R_{3}+2$	$R_{2}+R_{6}$	$R_{4}+R_{8}$	$R_{1}+R_{7}$	$R_{1}+R_{3}$	$R_{5}+R_{8}$	$R_{4}+R_{7}$
R_{3}			$R_{1}+2$	$\overline{R_{7}+R_{8}}$	$R_{6}+R_{8}$	$R_{2}+R_{5}$	$R_{1}+R_{4}$	$R_{4}+R_{5}$
R_{4}				$R_{2}+2$	$R_{1}+R_{6}$	$R_{5}+R_{7}$	$R_{3}+R_{6}$	$R_{2}+R_{3}$
R_{5}					$R_{8}+2$	$\overline{R_{3}+R_{4}}$	$R_{2}+R_{7}$	$R_{3}+R_{5}$
R_{6}						$R_{7}+2$	$R_{4}+R_{6}$	$R_{1}+R_{8}$
R_{7}	-						$R_{5}+2$	$\overline{R_{1}+R_{2}}$
R_{8}								$R_{3}+2$

c
$c_{1}$$4(17+3 a)-2(3+a) b$ c_{2} $c_{3}$$-\frac{8\left(b+b_{1}\right)}{4(17+3 a)+2(3+a) b}$

where observe that the overlined terms $R_{5}+R_{6}, R_{7}+R_{8}, R_{3}+R_{4}$, and $R_{1}+R_{2}$, have the values $Q_{4}, Q_{3}, Q_{2}, Q_{1}$, respectively, and in the last table b_{1} may be considered as denoting its value $=\frac{8 a}{b}$, so that c_{1}, c_{2}, c_{3} are each given rationally in terms of a, b, c.

And from the foregoing results, we have

$$
\begin{array}{ll}
P_{1}=\frac{1}{2}(-1+a), & =1 \cdot 56 \\
P_{2}=\frac{1}{2}(-1-a), & =-2 \cdot 56, \\
Q_{1}=\frac{1}{4}(-1+a+b), & =2 \cdot 05, \\
Q_{2}=\frac{1}{4}(-1+a-b), & =-0 \cdot 49, \\
Q_{3}=\frac{1}{4}\left(-1-a+b_{1}\right), & =0 \cdot 34, \\
Q_{4}=\frac{1}{4}\left(-1-a-b_{1}\right), & =-2 \cdot 90, \\
R_{1}=\frac{1}{8}(-1+a+b+c), & =1 \cdot 87, \\
R_{2}=\frac{1}{8}(-1+a+b-c), & =0 \cdot 18, \\
R_{3}=\frac{1}{8}\left(-1+a-b-c_{1}\right), & =-1 \cdot 96, \\
R_{4}=\frac{1}{8}\left(-1+a-b+c_{1}\right), & =1 \cdot 47, \\
R_{5}=\frac{1}{8}\left(-1-a+b_{1}+c_{2}\right), & =0 \cdot 89, \\
R_{6}=\frac{1}{8}\left(-1-a+b_{1}-c_{2}\right), & =-0 \cdot 55, \\
R_{7}=\frac{1}{8}\left(-1-a-b_{1}-c_{3}\right), & =-1 \cdot 70, \\
R_{8}=\frac{1}{8}\left(-1-a-b_{1}+c_{3}\right), & =-1 \cdot 20 .
\end{array}
$$

The approximate numerical values have been given throughout only for the purpose of showing that the signs of the square roots have been rightly determined.

