907.

NOTE ON THE NINTH ROOTS OF UNITY.

[From the Messenger of Mathematics, vol. xx. (1891), p. 63.]
Let θ be a prime ninth root of unity, so that $\theta^{6}+\theta^{3}+1=0$; and write

$$
\begin{aligned}
& a=\theta+\theta^{8} \\
& b=\theta^{2}+\theta^{7} \\
& c=\theta^{4}+\theta^{5}
\end{aligned}
$$

then

$$
a+b+c+\theta^{3}+\theta^{6}=\frac{1-\theta^{9}}{1-\theta}-1,=-1
$$

that is,

$$
a+b+c=0 .
$$

Also
whence

$$
\begin{aligned}
& a^{2}=b+2, \quad b c=b-1, \\
& b^{2}=c+2, \quad c a=c-1, \\
& c^{2}=a+2, \quad a b=a-1, \\
& a b+a c+b c=-3, \\
& a b c=-1 ;
\end{aligned}
$$

and a, b, c are thus the roots of the equation $x^{3}-3 x+1=0$. We have

$$
\begin{aligned}
& a^{2} b+b^{2} c+c^{2} a=a^{2}+b^{2}+c^{2}=6 \\
& a b^{2}+b c^{2}+c a^{2}=b c+c a+a b=-3
\end{aligned}
$$

and thence

$$
-\left(a^{2} b+b^{2} c+c^{2} a\right)+\left(a b^{2}+b c^{2}+c a^{2}\right)=(b-c)(c-a)(a-b)=-6-3,=-9
$$

The equation $x^{3}-3 x+1=0$ is thus such that $a^{2} b+b^{2} c+c^{2} a$, and consequently any rational function whatever of a, b, c, invariable by the cyclical interchange ($a b c$) of the roots, has a rational value.

