917.

[NOTE ON THE THEORY OF RATIONAL TRANSFORMATION.]

[From the Proceedings of the London Mathematical Society, vol. xxir. (1891), pp. 475, 476.]

In my paper, "Note on the Theory of the Rational Transformation between Two Planes, and on Special Systems of Points," Proc. Lond. Math. Soc. t. iII. (1870), pp. 196-198, [450], I notice a difficulty which presents itself in the theory. The transformation is given by the equations

$$
x^{\prime}: y^{\prime}: z^{\prime}=X: Y: Z
$$

where X, Y, Z are functions $(*)(x, y, z)^{n}$, such that $X=0, Y=0, Z=0$ are curves in the first plane passing through α_{1} points each once, α_{2} points each twice (that is, having each of the α_{2} points for a double point), α_{3} points each 3 times, and so on. We have as the condition of a single variable point of intersection,

$$
\alpha_{1}+4 \alpha_{2}+9 \alpha_{3}+\ldots=n^{2}-1
$$

and as the condition in order that each of the curves $X=0, Y=0, Z=0$, or say the curve $a X+b Y+c \boldsymbol{Z}=0$, may be unicursal,

$$
\alpha_{2}+3 \alpha_{3}+\ldots=\frac{1}{2}(n-1)(n-2)
$$

and we thence deduce

$$
\alpha_{1}+3 \alpha_{2}+6 \alpha_{3}+\ldots=\frac{1}{2} n(n+3)-2
$$

viz. the postulation of the fixed points quoad a curve of the order n is less by 2 than the postulandum (or, as I prefer to call it, the capacity) $\frac{1}{2} n(n+3)$ of the curve of the order n; that is, there are precisely the three asyzygetic curves $X=0, Y=0$, $Z=0$. This is as it should be, assuming that the ($\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots$) points are an ordinary system of points: but what if they form a special system having a postulation less 15-2
than $\alpha_{1}+3 \alpha_{2}+6 \alpha_{3}+\ldots$? If, for instance, the postulation is $=\alpha_{1}+3 \alpha_{2}+6 \alpha_{3}+\ldots-1$, then this would be $=\frac{1}{2} n(n+3)-3$, and there would be four asyzygetic curves $X=0$, $Y=0, Z=0, W=0$. I believe this to be impossible; but the only proof which I can offer rests upon a remark in regard to the form of the tables*, pp. 148, 149, of my paper "On the Rational Transformation between Two Spaces," Proc. Lond. Math. Soc., t. III. (1870), pp. 127-180, [447]. I recall that the Jacobian curve $J(X, Y, Z)=0$ consists of α_{1}^{\prime} lines, α_{2}^{\prime} conics, α_{3}^{\prime} cubics, \ldots, \&c., each passing a certain number of times through the $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right)$ points, and that the number of times of passage is shown by these tables; thus, loc. cit., $n=5, \alpha_{1}=8, \alpha_{4}=1$: the Jacobian consists of eight lines and a quartic, and we have the table ($\alpha_{1}^{\prime}=8, \alpha_{4}^{\prime}=1$),

showing that the quartic passes through the eight points α_{1}, and through the point α_{4} three times (has α_{4} for a triple point). Imagine a new function W. Then in like manner $J(X, Y, W)=0$ consists of eight lines and a quartic, and this quartic passes through the eight points α_{1} and the point α_{4} three times; that is, the two quartics intersect in $8+3.3,=17$ points; and thus the two quartics must be one and the same curve; this implies a syzygy between X, Y, Z, W, viz. W is a mere linear function of X, Y, Z. The general remark is that, if in the tables m^{p} is reckoned as $m p^{2}$, then in the table for the several lines (exclusive of those for which the outside accented letter is $=0$, and therefore the tabular numbers of the line are each $=0$), i.e. for the lines which correspond to a line, a conic, a cubic, a quartic, \&c., respectively, the sums of the tabular numbers are $1^{2}+1,2^{2}+1,3^{2}+1,4^{2}+1$, \&cc., respectively. This is, in fact, the case for each of the eleven tables (loc. cit.).
[* This Collection, vol. viI., pp. 208, 209.]

