934.

NOTE ON THE SO-CALLED QUOTIENT G / H IN THE THEORY OF GROUPS.

[From the American Journal of Mathematics, t. xv. (1893), pp. 387, 388.]
The notion (see Hölder, "Zur Reduction der algebraischen Gleichungen," Math. Ann., t. xxxiv. (1887), § 4, p. 31) is a very important one, and it is extensively made use of in Mr Young's paper, "On the Determination of Groups whose Order is the Power of a Prime," American Journal of Mathematics, t. xv. (1893), pp. 124178; but it seems to me that the meaning is explained with hardly sufficient clearness, and that a more suitable algorithm might be adopted, viz. instead of $G_{1}=G / \Gamma_{1}$, I would rather write $G=\Gamma_{1} \cdot Q G_{1}$ or $Q G_{1} \cdot \Gamma_{1}$.

We are concerned with a group G containing as part of itself a group Γ_{1}, such that each element of Γ_{1} is commutative with each element of G. This being so, we may write

$$
G=Q G_{1} \cdot \Gamma_{1},
$$

where $Q G_{1}$ is not a group but a mere array of elements, viz. if $\Gamma_{1}=\left(1, A_{2}, \ldots, A_{\varepsilon}\right)$, and $Q G_{1}=\left(1, B_{2}, \ldots, B_{t}\right)$, then the formula is

$$
G=\left(1, B_{2}, \ldots, B_{t}\right)\left(1, A_{2}, \ldots, A_{s}\right)
$$

where it is to be noticed that the elements B are not determinate; in fact, if A_{θ} be any element of Γ_{1}, we may, in place of an element B, write $B A_{\theta}$, for

$$
B\left(1, A_{2}, \ldots, A_{s}\right) \quad \text { and } \quad B A_{\theta}\left(1, A_{2}, \ldots, A_{s}\right)
$$

are, in different orders, the same elements of G.
But, G being a group, the product of any two elements of G is an element of G; viz. we thus have in general

$$
B_{i} A_{i^{\prime}}, B_{j} A_{j^{\prime}}=B_{k} A_{k^{\prime}}
$$

that is,

$$
B_{i} B_{j}=B_{k} A_{k^{\prime}} A_{j^{\prime}}^{-1} A_{j}^{-1} \quad(i, j, \text { unequal or equal }),
$$

where the B_{k} is a determinate element of the series $1, B_{2}, \ldots, B_{t}$, depending only on the elements B_{i} and B_{j} into the product of which it enters; and it is in nowise affected by the before-mentioned indeterminateness of the elements B : say B_{i}, B_{j} being any two elements of the series $1, B_{2}, \ldots, B_{t}$, we have the last preceding equation wherein B_{k} is a determinate element of the same series.

We may imagine a set of elements $1, B_{2}, \ldots, B_{t}$ for which, B_{i}, B_{j} being any two of them and B_{k} a third element determined as above, we have always $B_{i} B_{j}=B_{k}$, that is, these elements $1, B_{2}, \ldots, B_{t}$ now form a group, say the group G_{1}; the original elements $1, B_{2}, \ldots, B_{t}$ (which are subject to a different law of combination $B_{i} B_{j}=B_{k} A_{k^{\prime}} A_{j^{\prime}}{ }^{-1} A_{j}^{-1}$, and do not form a group) are regarded as a mere array connected with this group, and so represented as above by $Q G_{1}$; and the relation of the original group G to the group Γ_{1} (consisting of elements commutative with those of G) and to the new group G_{1} is expressed as above by the equation

$$
G=\Gamma_{1} \cdot Q G_{1}, \quad=Q G_{1} \cdot \Gamma_{1} .
$$

Cambridge, 2 June, 1893.

