934.

NOTE ON THE SO-CALLED QUOTIENT G/H IN THE THEORY OF GROUPS.

[From the American Journal of Mathematics, t. xv. (1893), pp. 387, 388.]

THE notion (see Hölder, "Zur Reduction der algebraischen Gleichungen," Math. Ann., t. XXXIV. (1887), § 4, p. 31) is a very important one, and it is extensively made use of in Mr Young's paper, "On the Determination of Groups whose Order is the Power of a Prime," American Journal of Mathematics, t. XV. (1893), pp. 124— 178; but it seems to me that the meaning is explained with hardly sufficient clearness, and that a more suitable algorithm might be adopted, viz. instead of $G_1 = G/\Gamma_1$, I would rather write $G = \Gamma_1 . QG_1$ or $QG_1 . \Gamma_1$.

We are concerned with a group G containing as part of itself a group Γ_1 , such that each element of Γ_1 is commutative with each element of G. This being so, we may write

$$G = QG_1 \cdot \Gamma_1,$$

where QG_1 is not a group but a mere array of elements, viz. if $\Gamma_1 = (1, A_2, ..., A_s)$, and $QG_1 = (1, B_2, ..., B_t)$, then the formula is

$$G = (1, B_2, ..., B_t) (1, A_2, ..., A_s),$$

where it is to be noticed that the elements B are not determinate; in fact, if A_{θ} be any element of Γ_1 , we may, in place of an element B, write BA_{θ} , for

 $B(1, A_2, ..., A_s)$ and $BA_{\theta}(1, A_2, ..., A_s)$

are, in different orders, the same elements of G.

But, G being a group, the product of any two elements of G is an element of G; viz. we thus have in general

 $B_i A_{i'} \cdot B_j A_{j'} = B_k A_{k'};$

www.rcin.org.pl

934] NOTE ON THE SO-CALLED QUOTIENT G/H in the theory of groups. 337

that is,

$$B_i B_j = B_k A_{k'} A_{j'}^{-1} A_{j}^{-1}$$
 (*i*, *j*, unequal or equal),

where the B_k is a determinate element of the series 1, B_2 , ..., B_t , depending only on the elements B_i and B_j into the product of which it enters; and it is in nowise affected by the before-mentioned indeterminateness of the elements B: say B_i , B_j being any two elements of the series 1, B_2 , ..., B_t , we have the last preceding equation wherein B_k is a determinate element of the same series.

We may imagine a set of elements 1, B_2 , ..., B_t for which, B_i , B_j being any two of them and B_k a third element determined as above, we have always $B_iB_j = B_k$, that is, these elements 1, B_2 , ..., B_t now form a group, say the group G_1 ; the original elements 1, B_2 , ..., B_t (which are subject to a different law of combination $B_iB_j = B_kA_kA_j^{-1}A_j^{-1}$, and do not form a group) are regarded as a mere array connected with this group, and so represented as above by QG_1 ; and the relation of the original group G to the group Γ_1 (consisting of elements commutative with those of G) and to the new group G_1 is expressed as above by the equation

$$G = \Gamma_1 \cdot QG_1, \quad = QG_1 \cdot \Gamma_1.$$

Cambridge, 2 June, 1893.