938.

ON TWO CUBIC EQUATIONS.

[From the Messenger of Mathematics, vol. xxil. (1893), pp. 69-71.]

Starting from the equations

$$
\begin{aligned}
& 2+a=b^{2} \\
& 2+b=c^{2} \\
& 2+c=a^{2}
\end{aligned}
$$

then eliminating b, c, we find
that is,

$$
\begin{gathered}
\left(a^{4}-4 a^{2}+2\right)^{2}-(a+2)=0 \\
a^{8}-8 a^{6}+20 a^{4}-16 a^{2}-a+2=0
\end{gathered}
$$

we satisfy the equations by $a=b=c$, and thence by

$$
a^{2}-a-2=(a-2)(a+1)=0 ;
$$

there remains a sextic equation breaking up into two cubic equations; the octic equation may in fact be written

$$
(a-2)(a+1)\left(a^{3}+a^{2}-2 a-1\right)\left(a^{3}-3 a+1\right)=0,
$$

and we have thus the two cubic equations

$$
x^{3}+x^{2}-2 x-1=0, \quad x^{3}-3 x+1=0
$$

for each of which the roots (a, b, c) taken in a proper order are such that $2+a=b^{2}$, $2+b=c^{2}, 2+c=a^{2}$.

It may be remarked that starting from $y^{3}+y^{2}-2 y-1=0, y^{2}=x+2$, the first equation gives $\left(y^{3}-2 y\right)^{2}-\left(y^{2}-1\right)^{2}=0$, that is, $y^{6}-5 y^{4}+6 y^{2}-1=0$, whence
that is,

$$
\begin{gathered}
(x+2)^{3}-5(x+2)^{2}+6(x+2)-1=0 \\
x^{3}+x^{2}-2 x-1=0
\end{gathered}
$$

And similarly, starting from $y^{3}-3 y+1=0, y^{2}=x+2$, the first equation gives $\left(y^{3}-3 y\right)^{2}-1=0$, that is, $y^{6}-6 y^{4}+9 y^{2}-1=0$, whence

$$
(x+2)^{3}-6(x+2)^{2}+9(x+2)-1=0
$$

that is,

$$
x^{3}-3 x+1=0 .
$$

To find the roots of the equation $x^{3}+x^{2}-2 x-1=0$, taking ω an imaginary cube root of unity, and writing $\left.\alpha=\sqrt[3]{ }\{7(2+3 \omega)\}, \beta=\sqrt[3]{\{7}\left(2+3 \omega^{2}\right)\right\}$, where observe that $2+3 \omega, 2+3 \omega^{2}$ are imaginary factors of 7 , viz.

$$
7=(2+3 \omega)\left(2+3 \omega^{2}\right),
$$

and therefore also $\alpha^{3}+\beta^{3}=7, \alpha \beta=7$, then the roots of the equation are

$$
\begin{aligned}
& 3 a=-1+\alpha+\beta \\
& 3 b=-1+\omega \alpha+\omega^{2} \beta \\
& 3 c=-1+\omega^{2} \alpha+\omega \beta .
\end{aligned}
$$

I verify herewith the equation $a^{2}=2+c$, viz, this gives

$$
(-1+\alpha+\beta)^{2}=18+3\left(-1+\omega^{2} \alpha+\omega \beta\right)
$$

or writing herein $2 \alpha \beta=14$, this is

$$
\alpha^{2}-\left(2+3 \omega^{2}\right) \alpha+\beta^{2}-(2+3 \omega) \beta=0
$$

that is,

$$
\alpha^{2}-\frac{1}{7} \beta^{3} \alpha \quad+\beta^{2}-\frac{1}{7} \alpha^{3} \beta \quad=0,
$$

or finally

$$
\left(\alpha^{2}+\beta^{2}\right)\left(1-\frac{1}{7} \alpha \beta\right)=0,
$$

satisfied in virtue of $\alpha \beta=7$.
For the second equation $x^{3}-3 x+1=0, \omega$ denoting as before, the roots are

$$
\begin{aligned}
& a=\omega^{\frac{1}{3}}+\omega^{\frac{5}{3}}, \text { whence } a^{2}=\omega^{\frac{2}{3}}+\omega^{\frac{7}{3}}+2=2+c \\
& b=\omega^{\frac{4}{3}}+\omega^{\frac{5}{3}}, \quad \text { " } \quad b^{2}=\omega^{\frac{5}{3}}+\omega^{\frac{1}{3}}+2,=2+a \\
& c=\omega^{\frac{7}{3}}+\omega^{\frac{2}{3}}, \quad „ \quad c^{2}=\omega^{\frac{5}{3}}+\omega^{\frac{4}{3}}+2,=2+b
\end{aligned}
$$

The equation $x^{3}-5 x^{2}+6 x-1=0$, which, writing therein $x+2$ for x, gives

$$
x^{3}+x^{2}-2 x-1=0,
$$

is considered in Hermite's Cours d'Analyse, Paris 1873, p. 12, and this suggested to me the foregoing investigation.

