939.

ON A CASE OF THE INVOLUTION $A F+B G+C H=0$, WHERE A, B, C, F, G, H ARE TERNARY QUADRICS.
[From the Messenger of Mathematics, vol. xxiI. (1893), pp. 182-186.]
We have here the six conics

$$
A=0, B=0, C=0, F=0, \quad G=0, \quad H=0
$$

the curves $A F=0$ and $B G=0$ are quartics intersecting in 16 points, and if 8 of these lie in a conic $H=0$, then the remaining 8 will be in a conic $C=0$. I take the first set of eight points to be $1,2,3,4,5,6,7,8$; the quartics $A F=0$ and $B G=0$ each pass through these eight points; and I assume for the moment

$$
A=1234, \quad F=5678 ; \quad B=1256, \quad G=3478
$$

viz. that $A=0$ is a conic through the points $1,2,3,4$, and similarly for F, G, B. Here $H=0$ is a conic through the points $1,2,3,4,5,6,7,8$, or attending only to the last four points it is a conic through $5,6,7,8$; we have therefore a linear relation between F, G, H, and supposing the implicit constant factors to be properly determined, this may be taken to be $F+G+H=0$; the identity $A F+B G+C H=0$ thus becomes $F(A-C)+G(B-C)=0$. We have thus F a numerical multiple of $B-C$, and by a proper determination of the implicit factor we may make this relation to be $F=B-C$; the last equation then gives $G=C-A$, and from the equation $F+G+H=0$, we have $H=A-B$; the six functions thus are

$$
\begin{array}{ll}
A, B-C, \text { or if we please, } & A-D, B-C, \\
B, C-A & B-D, C-A \\
C, A-B & C-D, A-B,
\end{array}
$$

where D is an arbitrary quadric function. The solution

$$
(A-D)(B-C)+(B-D)(C-A)+(C-D)(A-B)=0
$$

of the involution is an obvious and trivial one.

But the case which I proceed to consider is

$$
A=1234, F=5678 ; B=1256, \quad G=3478 \text {; }
$$

here $A F=0$, and $B G=0$, meet as before in the points $1,2,3,4,5,6,7,8$, and in eight other points, say that

$$
\begin{array}{lccccc}
A=0, B=0 & \text { meet in } & 1,2 & \text { and in two other points } \alpha, \beta, \\
A=0, G=0 & " & 3,4 & " & " \gamma, \delta, \\
F=0, B=0 & " & 5,6 & " & " \gamma, \zeta \\
F=0, G=0 & " & 7,8 & " & " & \eta, \theta ;
\end{array}
$$

then the 8 points $\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta$ will lie in a conic $C=0$.
I take $y^{2}-z x=0$ for the conic $H=0$; for any point in this conic we have $x: y: z=1: \theta: \theta^{2}$, and we may take $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6}, \theta_{7}, \theta_{8}$ for the parameters of the points $1,2,3,4,5,6,7,8$ respectively.

Write $(a, b, c, f, g, h X x, y, z)^{2}=0$ for the conic $A,=1234=0$; therefore we have
or, if

$$
a+b \theta^{2}+c \theta^{4}+f \theta^{3}+g \theta^{2}+h \theta=\theta-\theta_{1} \cdot \theta-\theta_{2} \cdot \theta-\theta_{3} \cdot \theta-\theta_{4}
$$

then

$$
\begin{aligned}
& p_{1234}=\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4} \\
& q_{1224}=\theta_{1} \theta_{2}+\theta_{1} \theta_{3}+\theta_{1} \theta_{4}+\theta_{2} \theta_{3}+\theta_{2} \theta_{4}+\theta_{3} \theta_{4}, \\
& r_{1234}=\theta_{1} \theta_{2} \theta_{3}+\theta_{1} \theta_{2} \theta_{4}+\theta_{1} \theta_{3} \theta_{4}+\theta_{2} \theta_{3} \theta_{4}, \\
& s_{1234}=\theta_{1} \theta_{2} \theta_{3} \theta_{4}
\end{aligned}
$$

$$
c=1, f=-p_{1224}, \quad b+g=q_{1234}, \quad h=-r_{1224}, \quad a=s_{1234}
$$

or, writing $g=-\lambda$, we have

$$
s_{1234} x^{2}+q_{1234} y^{2}+z^{2}-p_{1234} y z-r_{1234} x y+\lambda\left(y^{2}-z x\right)=0
$$

for the equation of the conic in question. We may without loss of generality put $\lambda=0$; and then if, in general,

$$
\Omega=s x^{2}+q y^{2}+z^{2}-p y z-r x y
$$

we have $A=\Omega_{1224}=0$ for the conic $A=0$. And thus the equations of the four conics are

$$
A=\Omega_{1224}=0, \quad F=\Omega_{5678}=0 ; \quad B=\Omega_{1256}=0, \quad C=\Omega_{3478}=0,
$$

or, as for shortness I write them,

$$
A=\Omega=0, \quad F=\Omega^{\prime}=0 ; \quad B=\Omega^{\prime \prime}=0, \quad C=\Omega^{\prime \prime \prime}
$$

viz. in Ω the suffixes are $1,2,3,4$, in Ω^{\prime} they are $5,6,7,8$, in $\Omega^{\prime \prime}$ they are $1,2,5,6$, and in $\Omega^{\prime \prime \prime}$ they are $3,4,7,8$.

I find that the implicit constant factors of $A F$ and $B G$ are $1,-1$, and consequently that the form of the identity is

$$
\Omega \Omega^{\prime}-\Omega^{\prime \prime} \Omega^{\prime \prime \prime}+\left(y^{2}-z x\right) C=0,
$$

where C is a quadric function to be determined; or, what is the same thing, we have

$$
\begin{aligned}
& \left(s x^{2}+q y^{2}+z^{2}-p y z-r x y\right)\left(s^{\prime} x^{2}+q^{\prime} y^{2}+z^{2}-p^{\prime} y z-r^{\prime} x y\right) \\
- & \left(s^{\prime \prime} x^{2}+q^{\prime \prime} y^{2}+z^{2}-p^{\prime \prime} y z-r^{\prime \prime} x y\right)\left(s^{\prime \prime \prime} x^{2}+q^{\prime \prime \prime} y^{2}+z^{2}-p^{\prime \prime \prime} y z-r^{\prime \prime \prime} x y\right) \\
+ & \left(y^{2}-z x\right) C=0 .
\end{aligned}
$$

Writing for shortness

$$
\begin{array}{ll}
\theta_{1}+\theta_{2}=\alpha, & \theta_{1} \theta_{2}=\beta, \\
\theta_{3}+\theta_{4}=\alpha^{\prime}, & \theta_{3} \theta_{4}=\beta^{\prime}, \\
\theta_{5}+\theta_{6}=\alpha^{\prime \prime}, & \theta_{5} \theta_{6}=\beta^{\prime \prime}, \\
\theta_{7}+\theta_{8}=\alpha^{\prime \prime \prime}, & \theta_{7} \theta_{8}=\beta^{\prime \prime \prime},
\end{array}
$$

we have

$$
\begin{array}{l|l|l|l}
p=\alpha+\alpha^{\prime} & p^{\prime}=\alpha^{\prime \prime} \quad+\alpha^{\prime \prime \prime} \\
q=\alpha \alpha^{\prime}+\beta+\beta^{\prime} & q^{\prime}=\alpha^{\prime \prime} \alpha^{\prime \prime \prime}+\beta^{\prime \prime}+\beta^{\prime \prime \prime} \\
r=\alpha \beta^{\prime}+\alpha^{\prime} \beta & r^{\prime}=\alpha^{\prime \prime} \beta^{\prime \prime \prime}+\alpha^{\prime \prime \prime} \beta^{\prime \prime} & p^{\prime \prime} & p^{\prime \prime \prime}=\alpha^{\prime}+\alpha^{\prime \prime \prime} \\
s^{\prime}=\beta^{\prime \prime} \beta^{\prime \prime \prime} & q^{\prime \prime}=\beta \alpha^{\prime \prime}+\beta+\beta^{\prime \prime} & q^{\prime \prime \prime}=\alpha^{\prime} \alpha^{\prime \prime \prime}+\alpha^{\prime} \beta^{\prime \prime \prime}+\alpha^{\prime \prime \prime} \beta^{\prime} \\
r^{\prime \prime}=\alpha \beta^{\prime \prime}+\alpha^{\prime \prime} \beta & r^{\prime \prime \prime}=\alpha^{\prime} \beta^{\prime \prime \prime}+\alpha^{\prime \prime \prime} \beta^{\prime} \\
s^{\prime \prime}=\beta \beta^{\prime \prime} & s^{\prime \prime \prime}=\beta^{\prime} \beta^{\prime \prime \prime} .
\end{array}
$$

In the last-mentioned equation, the first and second lines together are a quartic function of (x, y, z), say the value is

$$
\begin{aligned}
= & A x^{4}+B y^{4}+C z^{4} \\
& +F y^{3} z+G z^{3} x+H x^{3} y \\
& +I y z^{3}+J z x^{3}+K x y^{3} \\
& +L x^{2} y z+M x y^{2} z+N x y z^{2} \\
& +P y^{2} z^{2}+Q z^{2} x^{2}+R x^{2} y^{2},
\end{aligned}
$$

where after all reductions

$$
\begin{array}{ll}
A=s s^{\prime}-s^{\prime \prime} s^{\prime \prime \prime} & =0, \\
B=q q^{\prime}-q^{\prime \prime} q^{\prime \prime \prime} & =\left(\alpha \beta^{\prime \prime \prime}-\alpha^{\prime \prime \prime} \beta\right)\left(\alpha^{\prime}-\alpha^{\prime \prime}\right) \\
& \quad+\left(\alpha^{\prime} \beta^{\prime \prime}-\alpha^{\prime \prime} \beta^{\prime}\right)\left(\alpha-\alpha^{\prime \prime \prime}\right)-\left(\beta^{\prime}-\beta^{\prime \prime}\right)\left(\beta-\beta^{\prime \prime \prime}\right), \\
C=1-1 & =0, \\
F=-p q^{\prime}-p^{\prime} q+p^{\prime \prime} q^{\prime \prime \prime}+p^{\prime \prime \prime} q^{\prime \prime} & =\left(\alpha-\alpha^{\prime \prime \prime}\right)\left(\beta^{\prime}-\beta^{\prime \prime}\right)+\left(\alpha^{\prime}-\alpha^{\prime \prime}\right)\left(\beta-\beta^{\prime \prime \prime}\right), \\
G=0-0 & =0, \\
H=-r s^{\prime}-r^{\prime} s+r^{\prime \prime} s^{\prime \prime \prime}+r^{\prime \prime \prime} s^{\prime \prime} & =0, \\
I=-p-p^{\prime}+p^{\prime \prime}+p^{\prime \prime \prime} & =0, \\
J=0-0 & =\left(\alpha \beta^{\prime \prime \prime}-\alpha^{\prime \prime \prime} \beta\right)\left(\beta^{\prime \prime}-\beta^{\prime}\right)+\left(\alpha^{\prime} \beta^{\prime \prime}-\alpha^{\prime \prime} \beta^{\prime}\right)\left(\beta^{\prime \prime \prime}-\beta\right), \\
K=-q r^{\prime}-q^{\prime} r+q^{\prime \prime} r^{\prime \prime \prime}+q^{\prime \prime \prime} r^{\prime \prime} & =\left(\alpha \beta^{\prime \prime \prime}-\alpha^{\prime \prime \prime} \beta\right)\left(\beta^{\prime}-\beta^{\prime \prime}\right)+\left(\alpha^{\prime} \beta^{\prime \prime}-\alpha^{\prime \prime} \beta^{\prime}\right)\left(\beta-\beta^{\prime \prime \prime}\right), \\
L=-p s^{\prime}-p^{\prime} s+p^{\prime \prime} s^{\prime \prime \prime}+p^{\prime \prime \prime} s^{\prime \prime} & \\
M=p r^{\prime}+p^{\prime} r-p^{\prime \prime} r^{\prime \prime \prime}-p^{\prime \prime \prime} r^{\prime \prime} & =\left(\alpha \beta^{\prime \prime \prime}-\alpha^{\prime \prime \prime} \beta\right)\left(\alpha^{\prime \prime}-\alpha^{\prime}\right)+\left(\alpha^{\prime} \beta^{\prime \prime}-\alpha^{\prime \prime} \beta^{\prime}\right)\left(\alpha^{\prime \prime \prime}-\alpha\right), \\
N=-r-r^{\prime}+r^{\prime \prime}+r^{\prime \prime \prime} & \left.\beta^{\prime \prime}-\beta^{\prime}\right)+\left(\alpha^{\prime}-\alpha^{\prime \prime}\right)\left(\beta^{\prime \prime \prime}-\beta\right), \\
P=p p^{\prime}+q+q^{\prime}-p^{\prime \prime} p^{\prime \prime \prime}-q^{\prime \prime}-q^{\prime \prime \prime} & =0, \\
Q=s+s^{\prime}-s^{\prime \prime}-s^{\prime \prime \prime} & \\
R=r r^{\prime}+q s^{\prime}+q^{\prime} s-r^{\prime \prime} r^{\prime \prime \prime \prime}-q^{\prime \prime} s^{\prime \prime \prime}-q^{\prime \prime \prime} s^{\prime \prime}=0: & =\left(\beta^{\prime}-\beta^{\prime \prime}\right)\left(\beta-\beta^{\prime \prime \prime}\right),
\end{array}
$$

values which satisfy

$$
\begin{aligned}
& F+N=0 \\
& K+L=0 \\
& B+M+Q=0
\end{aligned}
$$

The quartic function is thus seen to be

$$
=\left(y^{2}-z x\right)\left(B y^{2}+F y z-Q z x+K x y\right)=0,
$$

viz. we have $B y^{2}+F y z-Q z x+K x y=0$ for the equation of the conic $C=0$.
Moreover, substituting for p, q, r, s, \&c., their values, we have finally for the required involution

$$
\begin{gathered}
{\left[\beta \beta^{\prime} x^{2}+\left(\alpha \alpha^{\prime}+\beta+\beta^{\prime}\right) y^{2}+z^{2}-\left(\alpha+\alpha^{\prime}\right) y z-\left(\alpha \beta^{\prime}+\alpha^{\prime} \beta\right) x y\right]} \\
\times\left[\beta^{\prime \prime} \beta^{\prime \prime \prime} x^{2}+\left(\alpha^{\prime \prime} \alpha^{\prime \prime \prime}+\beta^{\prime \prime}+\beta^{\prime \prime \prime}\right) y^{2}+z^{2}-\left(\alpha^{\prime \prime}+\alpha^{\prime \prime \prime}\right) y z-\left(\alpha^{\prime \prime} \beta^{\prime \prime \prime}+\alpha^{\prime \prime \prime} \beta^{\prime \prime}\right) x y\right] \\
-\left[\beta \beta^{\prime \prime} x^{2}+\left(\alpha \alpha^{\prime \prime}+\beta+\beta^{\prime \prime}\right) y^{2}+z^{2}-\left(\alpha+\alpha^{\prime \prime}\right) y z-\left(\alpha \beta^{\prime \prime}+\alpha^{\prime \prime} \beta\right) x y\right] \\
\times\left[y^{2}-z x\right) \times\left(\beta^{\prime} \beta^{\prime \prime \prime} x^{2}+\left(\alpha^{\prime} \alpha^{\prime \prime \prime}+\beta^{\prime}+\beta^{\prime \prime \prime}\right) y^{2}+z^{2}-\left(\alpha^{\prime}+\alpha^{\prime \prime \prime}\right) y z-\left(\alpha^{\prime} \beta^{\prime \prime \prime}+\alpha^{\prime \prime \prime} \beta^{\prime}\right) x y\right] \\
\left\{\begin{array}{l}
y^{2}\left[\left(\alpha \beta^{\prime \prime \prime}-\alpha^{\prime \prime \prime} \beta\right)\left(\alpha^{\prime}-\alpha^{\prime \prime}\right)+\left(\alpha^{\prime} \beta^{\prime \prime}-\alpha^{\prime \prime} \beta^{\prime}\right)\left(\alpha-\alpha^{\prime \prime \prime}\right)-\left(\beta-\beta^{\prime \prime \prime}\right)\left(\beta^{\prime}-\beta^{\prime \prime}\right)\right] \\
+y z\left[\left(\alpha-\alpha^{\prime \prime \prime}\right)\left(\beta^{\prime}-\beta^{\prime \prime}\right)+\left(\alpha^{\prime}-\alpha^{\prime \prime}\right)\left(\beta-\beta^{\prime \prime \prime}\right)\right] \\
-z x\left[\left(\beta-\beta^{\prime \prime \prime}\right)\left(\beta^{\prime}-\beta^{\prime \prime}\right)\right] \\
-x y\left[\left(\alpha \beta^{\prime \prime \prime}-\alpha^{\prime \prime \prime} \beta\right)\left(\beta^{\prime}-\beta^{\prime \prime}\right)+\left(\alpha^{\prime} \beta^{\prime \prime}-\alpha^{\prime \prime} \beta^{\prime}\right)\left(\beta-\beta^{\prime \prime \prime}\right)\right]
\end{array}\right\}=0 .
\end{gathered}
$$

It will be recollected that this is the solution for the case $A=1234, F=5678$; $B=1256, G=3478$: being that to which the present paper has reference.

