709.

ON THE NUMBER OF CONSTANTS IN THE EQUATION OF A SURFACE $P S-Q R=0$.

[From the Tidsskrift for Mathematik, Ser. 4, t. iv. (1880), pp. 145-148.]

The very important results contained in Mr H . Valentiner's paper "Nogle Sætninger om fuldstændige Skjæringskurver mellem to Flader" may be considered from a somewhat different point of view, and established in a more simple manner, as follows*.

Assuming throughout $n \geqq p+q, p \geqq q$, and moreover that P, Q, R, S denote functions of the coordinates (x, y, z, w) of the orders $p, q, n-q, n-p$ respectively: then the equation of a surface of the order n containing the curve of intersection of two surfaces of the orders p and q respectively, is

$$
\left.\begin{aligned}
& P, Q \\
& R, S
\end{aligned} \right\rvert\,=0,
$$

so that the number of constants in the equation of a surface of the order n satisfying the condition in question is in fact the number of constants contained in an equation of the last-mentioned form. Writing for shortness

$$
a_{p}=\frac{1}{6}(p+1)(p+2)(p+3)-1,=\frac{1}{6} p\left(p^{2}+6 p+11\right),
$$

the number of constants contained in a function of the order p is $=a_{p}+1$; or if we take one of the coefficients (for instance that of x^{p}) to be unity, then the number

[^0]of the remaining constants is $=a_{p}$; viz. a_{p} is the number of constants in the equation of a surface of the order p. As regards the surface in question
\[

\left.$$
\begin{aligned}
& P, Q \\
& R, S \\
& S
\end{aligned}
$$ \right\rvert\,=0,
\]

we may it is clear take P, Q, R each with a coefficient unity as above, but in the remaining function S, the coefficient must remain arbitrary: the apparent number of constants is thus $=a_{p}+a_{q}+a_{n-p}+a_{n-q}+1$; but there is a deduction from this number.

The equation may in fact be written in the form

$$
\left.\begin{array}{ll}
P+\alpha Q, & Q \\
R+\alpha S+\beta P+\alpha \beta Q, & S+\beta Q
\end{array} \right\rvert\,=0
$$

where α represents an arbitrary function of the order $p-q$, and β an arbitrary function of the degree $n-p-q$: we thus introduce $\left(a_{p-q}+1\right)+\left(a_{n-p-q}+1\right),=a_{p-q}+a_{n-p-q}+2$, constants, and by means of these we can impose the like number of arbitrary relations upon the constants originally contained in the functions P, Q, R, S respectively (say we can reduce to zero this number $a_{p-q}+a_{n-p-q}+2$ of the original constants): hence the real number of constants is

$$
\begin{aligned}
& a_{p}+a_{q}+a_{n-p}+a_{n-q}+1-\left(a_{p-q}+a_{n-p-q}+2\right), \\
= & a_{p}+a_{q}+a_{n-p}+a_{n-q}-a_{p-q}-a_{n-p-q}-1 \\
= & \omega \text { suppose; }
\end{aligned}
$$

viz. this is the required number in the case $n>p+q, p>q$.
If however $n=p+q$, or $p=q$, or if these relations are both satisfied, then there is a further deduction of 1,1 , or $2:$ in fact, calling the last-mentioned determinant $P^{P^{\prime},} Q^{\prime}$ then the four cases are

$$
\begin{aligned}
& n>p+q, p>q,\left|\begin{array}{l}
P^{\prime}, Q^{\prime} \\
R^{\prime}, \\
S^{\prime}
\end{array}\right|=\left|\begin{array}{c}
P^{\prime}, Q^{\prime} \\
R^{\prime}, S^{\prime}
\end{array}\right| \\
& n=p+q, p>q,\left|\begin{array}{cc}
P^{\prime}, & Q^{\prime} \\
R^{\prime}, S^{\prime \prime}
\end{array}\right|=\left|\begin{array}{r}
P^{\prime}+k R^{\prime}, \\
R^{\prime}, \\
Q^{\prime}+k S^{\prime} \\
S^{\prime}
\end{array}\right| \\
& n>p+q, p=q,\left|\begin{array}{c}
P^{\prime}, Q^{\prime} \\
R^{\prime}, S^{\prime}
\end{array}\right|=\left|\begin{array}{rr}
P^{\prime}, & Q^{\prime}+k P^{\prime} \\
R^{\prime}, S^{\prime}+k R^{\prime}
\end{array}\right| \\
& n=p+q, p=q,\left|\begin{array}{rr}
P^{\prime}, Q^{\prime} \\
R^{\prime}, S^{\prime}
\end{array}\right|=\left\lvert\, \begin{array}{rr}
P^{\prime}+k R^{\prime}, & Q^{\prime}+l P^{\prime}+k S^{\prime}+k l R^{\prime} \\
R^{\prime}, & S^{\prime}+l R^{\prime}
\end{array}\right.
\end{aligned}
$$

where l, l denote arbitrary constants: these, like the constants of α and β, may be used to impose arbitrary relations upon the original constants of P, Q, R, S; and hence the number of constants is $=\omega, \omega-1, \omega-1, \omega-2$ in the four cases respectively; where as above

$$
\omega=a_{p}+a_{q}+a_{n-p}+a_{n-q}-a_{p-q}-a_{n-p-q}-1 .
$$

If $n=4$, there is in each of the four cases one system of values of p, q; viz the cases are

$$
\begin{aligned}
& p, q= \\
& 21 \text { No. }=a_{2}+a_{1}+a_{2}+a_{3}-a_{1}-a_{1}-1=9+3+9+19-3-3-1,=33 \text {, } \\
& 31 \text { " } a_{3}+a_{1}+a_{1}+a_{3}-a_{2}-a_{0}-2=19+3+3+19-9-0-2,=33 \text {, } \\
& 11 \text { " } a_{1}+a_{1}+a_{3}+a_{3}-a_{0}-a_{2}-2=3+3+19+19-0-9-2 \text {, }=33 \text {, } \\
& 22 " a_{2}+a_{2}+a_{2}+a_{2}-a_{0}-a_{0}-3=9+9+9+9-0-0-3,=33 \text {, }
\end{aligned}
$$

and the number of constants is in each case $=33$. This is easily verified: in the first case we have a quartic surface containing a conic, the plane of the conic is therefore a quadruple tangent plane; and the existence of such a plane is 1 condition. In the second case the surface contains a plane cubic; the plane of this cubic is a triple tangent plane, having the points of contact in a line; and this is 1 condition. In the third case the surface contains a line, which is 1 condition: hence in each of these cases the number of constants is $34-1,=33$. In the fourth case, where the surface contains a quadriquadric curve, we repeat in some measure the general reasoning: the quadriquadric curve contains 16 constants, and we have thus 16 as the number of constants really contained in the equations $P=0, Q=0$ of the quadriquadric curve: the equation $P S-Q R=0$, contains in addition $9+10,=19$ constants, but writing it in the form $P(S+k Q)-Q(R+k P)=0$, we have a diminution $=1$, or the number apparently is $16+19-1,=34$. But the quadriquadric curve is one of a singly infinite series $P+l R=0, Q+l S=0$ of such curves, and we have on this account a diminution $=1$; the number of constants is thus $34-1,=33$ as above : the reasoning is, in fact, the same as for the case of a plane passing through a line; the line contains 4 constants, hence the plane, quà arbitrary plane through the line, would contain $1+4,=5$ constants; but the line being one of a doubly infinite systern of lines on the plane the number is really $\check{5}-2,=3$, as it should be.

Cambridge, 2nd Sept., 1880.

[^0]: * Idet vi med stor Glæde optage Prof. Cayley's simple Forklaring af den Reduktion af Konstanttallet i Ligningen $P S-Q R=0$, som Hr. Valentiner havde paavist (Tidsskr. f. Math. 1879, S. 22), skulle vi dog bemærke, at Grunden til, at dennes Bevis or bleven saa vanskeligt, er den, at han tillige har villet bevise, at der ikke finder nogen yderligere Reduktion Sted.

