712.

A PARȚIAL DIFFERENTIAL EQUATION CONNECTED WITH THE SIMPLEST CASE OF ABEL'S THEOREM.

[From the Report of the British Association for the Advancement of Science, (1881), pp. 534, 535.]

ConSIder a given cubic curve cut by a line in the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, $\left(x_{3}, y_{3}\right)$; taking the first and second points at pleasure, these determine uniquely the third point. Analytically, the equation of the curve determines y_{1} as a function of x_{1}, and y_{2} as a function of x_{2} : writing in the equation

$$
x_{3}=\lambda x_{1}+(1-\lambda) x_{2}, \quad y_{3}=\lambda y_{1}+(1-\lambda) y_{2}
$$

we have λ by a simple equation, and thence x_{3}; viz. x_{3} is found as a function of x_{1}, x_{2}, and of the nine constants of the equation. Hence forming the derived equations (in regard to x_{1}, x_{2}) of the first, second, and third orders, we have $(1+2+3+4=) 10$ equations from which to eliminate the 9 constants; x_{3}, considered as a function of x_{1} and x_{2}, thus satisfies a partial differential equation of the third order, independent of the particular cubic curve.

To obtain this equation it is only necessary to observe that we have, by Abel's theorem,

$$
\frac{d x_{1}}{X_{1}}+\frac{d x_{2}}{\bar{X}_{2}}+\frac{d x_{3}}{\bar{X}_{3}}=0
$$

where X_{1} is a given function of x_{1} and y_{1}, that is, of $x_{1} ; X_{2}$ and X_{3} are the like functions of x_{2} and x_{3} respectively. Hence, considering x_{3} as a function of x_{1} and x_{2}, we have

$$
\frac{d x_{3}}{d x_{1}}=-\frac{X_{3}}{\bar{X}_{1}}, \quad \frac{d x_{3}}{d x_{2}}=-\frac{X_{3}}{\bar{X}_{2}}
$$

and consequently

$$
\frac{d x_{3}}{d x_{1}} \div \frac{d x_{3}}{d x_{2}}=\frac{X_{2}}{\bar{X}_{1}}
$$

where X_{2}, X_{1} are functions of x_{2}, x_{1} respectively: hence taking the logarithm and differentiating successively with regard to x_{1} and x_{2}, we have

$$
\frac{d}{d x_{1}} \frac{d}{d x_{2}} \log \left(\begin{array}{l}
d x_{3} \\
d x_{1}
\end{array} \frac{d x_{3}}{d x_{2}}\right)=0
$$

which is the required partial differential equation of the third order.
This differential equation has a simple geometrical signification. Consider three consecutive positions of the line meeting the cubic curve in the points $1,2,3$; $1^{\prime}, 2^{\prime}, 3^{\prime} ; 1^{\prime \prime}, 2^{\prime \prime}, 3^{\prime \prime}$ respectively: qua equation of the third order, the equation should in effect determine $3^{\prime \prime}$ by means of the other points. And, in fact, the three positions of the line constitute a cubic curve; the nine points are thus the intersections of two cubic curves, or, say, they are an "ennead" of points; any eight of the points thus determine uniquely the ninth point.

