715.

NOTE ON A SYSTEM OF ALGEBRAICAL EQUATIONS.

[From the Messenger of Mathematics, vol. vil. (1878), pp. 17, 18.]

Assume

$$
\begin{gathered}
x+y+z=P, \\
y z+z x+x y=Q, \\
x y z=R, \\
A=x(n y z+Q)-w^{2}(m x+P), \\
B=y(n z x+Q)-w^{2}(m y+P), \\
C=z(n x y+Q)-w^{2}(m z+P), \\
\Theta=-m n R+P Q .
\end{gathered}
$$

Then

$$
\begin{aligned}
(m z+ & P) B-(m y+P) C \\
& =(m y z+P y)(n z x+Q)-(m y z+P z)(n x y+Q) \\
& =m y z(n z x+Q-n x y-Q)+P n x y z+P Q y-P n x y z-P Q z \\
& =m n x y z(z-y)-P Q(z-y) \\
& =(z-y)\{m n x y z-P Q\}=(y-z) \Theta ;
\end{aligned}
$$

whence, identically,

$$
\begin{aligned}
& (m z+P) B-(m y+P) C=(y-z) \Theta, \\
& (m x+P) C-(m z+P) A=(z-x) \Theta, \\
& (m y+P) A-(m x+P) B=(x-y) \Theta .
\end{aligned}
$$

Hence any two of the equations $A=0, B=0, C=0$ imply the third equation.

We have

$$
\begin{aligned}
A & =x\{(n+1) y z+z x+x y\}-w^{2}\{(m+1) x+(y+z)\} \\
& =\left(x^{2}-w^{2}\right)(y+z)-x\left[(m+1) w^{2}-(n+1) y z\right],
\end{aligned}
$$

and similarly for B and C. The three equations therefore are

$$
\begin{aligned}
& \frac{x}{x^{2}-w^{2}}=\frac{y+z}{(m+1) w^{2}-(n+1) y z}, \\
& \frac{y}{y^{2}-w^{2}}=\frac{z+x}{(m+1) w^{2}-(n+1) z x}, \\
& \frac{z}{z^{2}-w^{2}}=\frac{x+y}{(m+1) w^{2}-(n+1) x y} ;
\end{aligned}
$$

and any two of these equations imply the third equation.

