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On the global behaviour of one-dimensional acceleration waves
in a material with internal variables

W. KOSINSKI (WARSZAWA)

AMPLITUDE of one-dimensional acceleration waves propagating through a material which is
described by the strain and the internal variable vector is investigated. It is shown that the
amplitude of the wave obeys the Bernoulli equation. The propositions on the local and global
in time behaviour of the amplitude are formulated. A wave entering a homogeneous state
of a material of grade two is precisely discussed.

Zbadano amplitude jednowymiarowych fal przy$pieszenia, rozprzestrzeniajacych sie w materiale,
opisywanym przez odksztalcenie i wektor parametréw wewnetrznych. Wykazano, ze amplituda
fali spetnia réwnanie Bernoulliego. Sformutowano wnioski dotyczace lokalnego i globalnego
w czasie zachowania si¢ amplitudy. Szczegblowo oméwiono fale poruszajaca si¢ w jednorod-
nym stanie materiatlu drugiego rzedu.

HconenoBana amIumaTya OMHOMEPHBIX BOJIH YCKODEHHA pPACIPOCTDAHMIONIMXCA B Mare-
puasie, OMMCHLIBAHHOM Hedopmaumeil B BeKTOPOM BHYTpeHHMX napamerpoB. JlokasaHo, uTo
aMIUTHTY/a BOJHEI YAOBJIETBOpAeT ypaBHeHmio Bepry/um. ChopMynHpoBaHB! BBIBOIBI, Ka-
CAIOLIHECH JIOKAIBHOTO M riI00aMbHOr0 BO BpEeMEHM MOBeleHHA amiumTtyael. IToapoGHO 06-
Cy»/IeHa BOJIHA ABHIKYILAACA B OJHOPOSHOM COCTOSHMM MaTepHala BTOPOro NOpAIKA.

1. Introduction

IN THE PREVIOUS paper [4] an analysis of acceleration waves in a material with internal
parameters was given. There it was assumed that the internal dissipation of a rheological
material could be described by # internal scalar variables (parameters). Here the same
assumption is done. But now we neglect the thermal effects.

The object of this paper is to investigate the behaviour of the acceleration wave am-
plitude in the material under consideration in the case of one-dimensional theory.

The governing differential equation obtained in Sec. 2 is of Bernoulli type. In Sec. 3
the propositions on the local behaviour of the amplitude are formulated. The theorem
on global behaviour of amplitude given in this section enables us to state the existence
of the critical initial amplitude.

In Sec. 4, a wave entering a homogeneous state of a material of grade two is precisely
discussed. Furthermore, the solution of the general initial value problem in terms of
homogeneous strain functions is obtained.

2. The amplitude and the velocity of acceleration waves

We shall identify a body with an open region £ which is its image in the fixed ref-
erence configuration ». The motion of a body is defined by a function y: #xR — R;
the value x = (X, t) determines the location x at time ¢ of the material point X. By R
we denote a real axis.
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In the paper, acceleration waves will be discussed. It means that we shall consider
the motion y of the body &, which is a twice continuously differentiable function on
# x R, except for jump discontinuity across some curve J. This curve may be interpreted
as a material trajectory(?) of the acceleration wave. In other words the curve ) has the

property: the second derivatives of y have jump discontinuities across ), only and are
continuous in both variables X and ¢ everywhere else.

If (Y(1),t) e ', then Y(¢) is the particle at which the wave is to be found at time ¢
and U(¢t) = %Y(t) is the intrinsic velocity of the wave. We assume that U(¢) # 0.

In the motion y with an acceleration wave, the derivatives

@ B0 = Soa,0-1, 54,0 =2 40x,1)

are continuous but

2

d W ? . a2
@2 xE(, 1) = 5o a1, 506, 1) = 552X, 1) and  E(X, 1) = zo (X, 1),
as well as the higher derivatives of ¥ have jump discontinuities.
Let(*)
a(t) =[] (1) #0
be the amplitude of the acceleration wave.
The compatibility condition [6]
d ;
(2.3) = U1 = U1+UloxS]

with f = X and E implies that
(2.4) —U[E] = U?[0xE] = a.

In the present paper a material in particle X of the body # is defined by the
constitutive equation for the stress ([4, 5])

2.5) T(X,t) = T(EX,1),a(X,t)) for tel0,®),
which is supplemented by the evolution equation for the internal variables «
(2.6) &X,1) = A(E(X, 1), a(X,1)) for te[0, ®)

with the initial data a(X,0) = ay(X).

Here o represents n scalar internal state variables (parameters) which are introduced
to describe the internal dissipation of a rheological material.

If A: (—1, ®)x R" - R" is a continuous function of its variables and Lipschitz con-
tinuous with respect to the second variable then, for each vector ap and a continuous

() Cf. [4] and the literature cited there,

(%) We use the well-known notation: for a function f(X, ¢), [f] = f~—f* withf* i‘ lll’(n; flx, 1.
=Y(Nx
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strain function E(-) on [0, co) there exists a unique continuously differentiable solution
of the problem (2.6)(%).
Hence in a motion with an acceleration wave we have (cf. [2-4])

2.7 [6] =[8=0
and by (2.3) with f = «
2.8 [0xa] = 0.

In following considerations we assume that the constitutive function 7 is C3?-class
and the function 4 is C'-class in their domains.

Let o denote the mass density in the reference configuration x. Then the law of motion
in the presence of a body force b is of the form

2.9 dxT+ob = pX
on either side of the wave and across the wave

(2.10) [0xT] = [ox]

after the assumption that the force & is C!-class.
Using (2.4) and (2.10) we have the expression for the velocity of the wave (cf. [2-4])

2.11) QUz(t) = 329'(—5‘(}’(‘): 1), G.(Y(f), t))!
where the smoothness property for the constitutive function J was used.

We shall attempt to find the equation which describes changes of the amplitude
a(t) = [¥](2).

LeMMA 1. The amplitude of an acceleration wave propagating into o material with in-
ternal state variables satisfies the equation

—_— == 2

2.12) = pa+pa?,

where

_ 1 du(t) 1 ,, S4 92 +
(2.13) u(t) = ZQU{Q a T ) 0T E* — 039 (0xE)
1 1 .
+U—(t)-ag.?'—agA+m3,35§-a—3¢355'-3xﬂ},
‘T

B = —sue,7

The derivatives 03T, 0.F , Oz A and 3, 05T are evaluated at (E(Y(¢), 1), «(Y(?), 1)) and
a and dxo at (Y(1),1).
Proof. Equations (2.3) and (2.4) yield

—d a 4 .

(®) In [5] the theorem of existence and uniqueness of (2.6) was formulated.
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Differentiation (2.9) with respect to time ¢ gives on ),
1 i
(2.15) [x] = - [0xTT.

After using (2.5) and (2.6) and the smoothness assumptions about J and 4 we have

(2.16)  [0xT) = 05T [0xE)+ 33T [EdxE)+8,T - g A[9x E]
+ 0,057 - (&[0x E] +dx a[E]),
where (2.7) was used.

If the following equality for two arbitrary functions having jumps across ), is used
in (2.16)
2.17) [/ = [f] (A +f* [R) +h* [f],
then substituting the result into (2.14) and after using (2.4) we have (2.12) with (2.13).

Notice that the coefficient u, defined by (2.13),, depends on the rheological (i.e. elastic
and inelastic) properties of the material; it also depends on the strain rate, strain gradient,
rate of the internal variables and on the gradient of the internal variables just ahead of
the waves. On the other hand, the coefficient f, defined by (2.13),, depends on the elastic
properties of the material alone.

In the equation (2.13) the derivative dU/dt takes place. By an additional calculation,
this derivative may be determined.

LEMMA 2. At an acceleration wave

dau 1

where 03T and 0,0xT are evaluated at (E(Y(1), 1), a(Y(1), 1)).
Proof. Let us notice that the operator of differentiation d/dt has the form

(2T E* +3.057 - ) + %(3%.?(3,@* + 02027 - 0x00),

d /] d
(2.19) F Tl 7] +U—37¥-.
If we apply (2.19) to (2.11), we obtain(*)
(2.20) ZQU% = agy(é+ +U(0xE)*) + 02057 - (&+ Udxa),

where the homogeneous mass distribution was assumed.

Finally we have

THEOREM 1. The amplitude of an acceleration wave propagating into a material with
internal state variables satisfies the equation (2.12) with u defined by

Q2) up=- 5‘2‘13{23_0 (3T E* 40,05 ) — %(agy(axg)*f +9sT - Ox0)

1
+ E,—a,y-ayi}

and  defined by (2.13),. The velocity U is defined by (2.11).

(*) Let us notice that in (2.20) the values in — region can be taken, l::et':zluse,a"'*+U(t'3x_p‘)+ =f‘ +
+U@xf)" if [f1=0.
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3. Local and global behaviour of the amplitude

In what follows we assumed that the velocity of the wave is positive U(r) > 0. It
follows from(®) (2.11) and (2.13) that
3.1) signf(r) = —signdg T (E(Y(2), t), «(Y (1), 1)).
Hence we can formulate the following propositions for the local (in time) behaviour

of the amplitude a(). Before proceeding to state these results let us define A(¢) and E(f)
by the relations

62 A1) = %, B(r) =37 (B(¥(1), 1)) «(¥(0), 1)).

PROPOSITIONS. 1. At any instant t, if either E(t) < 0 and a(t) < A(t) or E(t) >0
and a(t) > A(t), then _fT la(2)] < 0. In particular, if either sign a(t) = sign A(¢) = signE(¢)
and |a(f)| > |A(¢)| or sign a(¢) = signA(¢) = —signE(¢) and |a(t)| < |A(t)], then

d
(3.3) @l <o.
2. At any instant t, if either B(f) < 0 and a(t) > A(t) or E(¢) > 0 and a(t) < A1),
then %]a( t)| > 0. In particular, if either

(34 signa(?) = signA(¢) = signﬁ(t) and |a(t)] < |A(2)|
or

signa(¢) = signi(¢) = -—sig'nfi(r) and |a(1)| > |A(2)],

then
d
3.5) E—Ia(r)l > 0.
3. At any instant t
(3.6) a(t) = A(t) if, and only if, -d%(:—) =0.

The proofs of the above results are simple consequences of (3.1) and of the properties
of Bernoulli equation (2.12) written in the form

(37) ‘—r = ﬁa(a——}l)

Let us notice that the statements 1-3 are true under the assumption A(t) # 0 for
t > 0. It follows that E(#) must be nonvanishing; in other words]

(3.8) E(t) = 837 # 0.

(%) In physical applications of the present theory we expect to have g > 0 because dg7 < 0
leads to a purely imaginary value of U.
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Physically, the condition (3.8) states that the constitutive function J is non-linear
in the strain (i.e. the elastic response of the material is non-linear).

Further, the statement 3 does not imply that the wave is steady, i.e. has a constant
amplitude over all the period of time, for A(#) may increase or decrease during the
period. The wave can have a constant amplitude over some period of time only
if dA(t)/dt = 0 during this period.

To investigate the global behaviour of the amplitude we apply the results of BAILEY
and CHEN [1].

Now we assume that x and f§ as the functions of ¢ from the interval [0, o) are in-
tegrable on every finite subinterval from [0, o) and that for all ¢ € [0, o) either(®)

(3.9) signE() = +1 or signE(¢) = —1.

Additionaly we shall assume that g is bounded away from zero; it is equivalent to
the requirement

(3.10) lim inf|8(r)| # 0.
=0

The above assumptions enable the formulation of the following theorem, which is
due to that of BAILEY and CHEN.

THEOREM 2. 1. Suppose that sign a(0) = —signf(t). If A is bounded above (below) or
tends to a non-negative (non-positive respectively) finite or infinite limit, then the same is
true for any solution a(t) > 0 (a(t) < O respectively), # > 0.

2. Suppose that signa(0) = signf(t). Let

(3.11) ® ki

JiBote "

a) If [a(0)| > w, then there exists a unique finite time to, > 0 such that

[

- —J!#(')dr 1
(3.12) !ﬁ(r)e ° dr=7@~

and
lim Ja(?)| = oo.

P=l

b) .{fflﬁ(r)]dt = o and |a(0)| < w, then lim inf|a(¢)] = 0.
0 =0

In view of the results above on the global behaviour of the amplitude a(¢), the number
w, defined by (3.11), is called the critical initial amplitude. The magnitude of the initial
amplitude a(0) of the acceleration wave compared with the critical initial amplitude w
decides whether the acceleration wave amplitude grows without bound over a finite time
interval or remains bounded at all times. The former conclusion, of course, suggests that
a shock wave is produced.

(%) Condition (3.9) states: for each fixed wo the stress-strain law T' =9 (E, o) is either concave
from above or concave from below.
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Let us notice that in the special case, when x and f are non-zero constants, i. €. o
and B, respectively, it follows from (3.2) and (3.11) that

(3.13) w=ﬁ%¢ﬁh>o and =0 if uo < 0.
0
The expression (3.13) is equal to |4,|; in view of the paper [2] it means that for constant
coefficients of the governing equation the critical initial amplitude turns into the critical
initial amplitude for the acceleration waves propagating into the material which has been
at a homogeneous equilibrium state.

4, A wave entering a homogeneous state of a material of grade two

We consider here an acceleration wave which since time 7z = 0 has been propagating
into a region which is in a homogeneous strain with the vanishing extrinsic body force,
that is b = 0 in (2.9) and for all 7> 0 and X > ¥(¢)

4.1) oxE(X,t) = 0.
Additionally, we assume that the initial distribution of the internal variables «, is homo-
geneous, too.

For such a case the initial value problem (2.6) for the internal variables has homo-
geneous solution only, for # > 0 and X > Y(t). Therefore the distribution of the stress
is also homogeneous (cf. (2.5)).

It appears that in the case under consideration the problem of finding the deformation
which fulfils the condition above reduces to the solution of the following initial value
problem [cf. (2.6) and (2.9)]

4.2) 9=0, E=0dw, &=AE, 0

with given v(0) = v,, E(0) = E,, «(0) = o, such that dxE = 0, dxa(0) = 0. Here, the
dependence of v, E and « on X is not denoted explicitly. In the equations (4.2) v denotes
the velocity function of the particles during the motion with the displacement function
u. Hence we can write

(4.3) v=1u, E=adxu,

where u(X, t) = y(X, )—-X.
The solution of (4.2) in the class of the homogeneous strain functions E is of the form

4.49) E(t) = EQ)+Vt, wo(t) = V(X—X,) =v(0), V =const>0
with a(z) as the solution of the equation
4.5) &(t) = A(EQ)+Vt, a(1)), a0) = .

The solution of (4.2) is unique under the condition that the solution of (4.5) is unique(’).
Now, we can pass to the problem of the propagation of the wave.

() Cf. sec. 2, where the conditions of uniqueness and existence were formulated.
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The assumption about the material ahead the wave enables us to formulate the follow-

ing condition: for all 1> 0 and X > ¥(¢), i.e. in + region,

4.6) EX,t) = Eo+Vt, EX,t)=V, &EX,1)=0, &.aX,t)=0.

The variables E and o determine the state of a material. Hence we can say that in
+ region the material is in a homogeneous state.

We see that for such a wave the differential equation (2.12) cannot be solved explicitly
for general materials. The knowledge of the derivatives of 9 and A is necessary(®).
For this reason we consider the special case of material. We assume:

a) the material [the constitutive equation (2.5)] is of grade two in the strain E and of
grade one in one internal state variable «;

b) the function A in (2.6) is linear in both variables.

These requirements mean that J(E, o) is a polynominal of degree 2 in the variable E
and of degree one in the variable a, but A(E, ) is a polynomial of degree one in both
variables. Hence we have

T(E,a) =b,E+b,a+b;Ex+bsE*+by,
A(E, a) = ¢y E+cyo+cq,
where by, ¢;, i=0,1,...4, j=0,1,2 are some physical constants.
For that case of the material we shall compute the velocity U and the coefficients
u and B of an acceleration wave propagating into the region in a homogeneous (strain)
state.
The derivatives needed have the forms
0pT (E, o) = by +by0+2b,E, 0,F(E,«) = b,+b;3E,
03T (E,a) = 2b,, OpA(E,0) =cy, .9pT(E,qa)=bs.

@7

“38)

From the reality of the wave we have
4.9 OgT (E, o) = by +by0+2b,E> 0  for each (E, a).

We know that the strain E varies the interval (—1, o) but « can be taken from the
real axis(®). Hence we have the first condition on the &’s:

{4.10) by =0.
From the inequality
by +2b,E >0 for each Ee(—1, )
we have
{4.11) by > 2b, > 0.

Let us notice that the conditions (4.10), (4.11) are sufficient only.
For this reason instead of (4.8) we have

“.12) 3T (E, o) = by +2b,E, 0. T(E,q) = by, 905 (E,®) =0

(®) Cf. (2.21) and (2.13),.
(°) Here, we assume none of the restrictions of the range of «.
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and additionally
(4.13) 03T (E, @) = 2b, > 0.

Since the wave enters the region in a homogeneous state [which is an equilibrium('°)
one if ¥V vanishes in (4.6) and A(E,, ap) = 0], thus

@.14) U(r) = ]/ by +2b4(Eo +V1)
e
For the coefficients #(¢#) and f(t) we have the expressions [cf. (2.21),(2.13), and (4.6)]
= —_-__1______ E_ 2 s }_ — 3b4V+bzcl
(4 15) ,u(t) = 2U3(t)9{2 aEyE +3.£'7'33A = 2(‘5,1 +2b4_(Eo+Vf)),
I A, \ |
2U()0eT ~ y/(by+2b4(Eo +V1))?
and for A(t)
= w(t) - 3b,V+b,cy m
4.16) i) = Gy = 2 ]/ : ,

In view of (4.15) we see that the coefficients u(t) and p(t) are integrable functions
on every finite subinterval of [0, c0). Additionally, the coefficient § fulfils

“4.17) signf(t) = —1.
Unfortunately, the condition (3.10) does not hold in our case, because
(4.18) lim |B(?)| = 0.

=

Since all the assumptions of Theorem 2 are not satisfied, therefore we cannot apply
the results of it. But in view of [1], the condition (3.10) is needed only in the proof of
point 1 of that theorem. Hence the point 2a) is true here. We shall formulate it in terms
of the constants &’s and ¢’s together with other cases of the global behaviour of the am-
plitude a(z).

In that formulation the general form of the solution of the governing equation (2.12)
will be helpful. Introducing the change of variable

d(f) = ;(lt—)
the Eq. (2.12) reduces to
2 a(1) = pd()-.

Since p and B are integrable on every finite subinterval of [0, o), the above equation
has the solution

(1) = i {4 - [ ﬁ(r)e_{'“(”d’dr}.

(*°) In [2, 3] the propagation of acceleration waves in a material in a homogeneous equilibrium state
was considered.
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Hence, for a(¢) in (2.12) we have the solution
4
- ({ a(x)de
(4.19) a(t) = ‘ . ;
10) —ofﬁ(r)eﬂﬂrﬂ('mdr

where a(0) is the initial value of a.
In order to determine the critical initial amplitude w, we compute

. 3b‘ V+b3 C; b] +2b4(Eo+V‘)
f,u( Dde = I bRt

(4.20)
3b4 ¥+ byey

_J,:(r)dv (gUz(f) T abyV
U%(0) ’
where in view of (4.14) the following denotation was used
QUZ(I) = bl +2b4(E0+Vf), QUz(O) = b; +264E0.

Hence we have

! _fr,.()a . _ %¢V+b:cl ¢ 3b4¥ +bscy
@21)  [p@e 9" ct=—bye(eU©) ® f (b1 +2b4(Eo+VD)) B x
0
-3 21"41/9
x (by +2by(Eo+V7)) 2dr = o e {(eU2@)"(eU? (1))"— (eU?(0)) =}
where
4.22) y = 3byV+byc, x by V+b,c, )

v b,V

For the initial critical amplitude we have the following expressions [cf. (3.11) and
(4.21)]

w=0 if 7>0,ie bV+be, >0,

“.23) il
i ‘—ZILCLU(O) = —2VU©) if(") 7 <0, ie. bV+bye; <O0.
4
For the material under consideration we have [cf. (3.2), (4.11)]

E(t) = 2b, > 0.
We shall consider two distinct circumstances:
signa(0) = signB(1) = +1 and signa(0) = —signE(f) = —1
For the first case we formulate

(*') In applications the condition b,c, < 0 seems natural. Hence by V+bsc; < 0 is possible.
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THEOREM 3. Let a(0) > 0. The amplitude a(t) of an acceleration wave propagating
into the material of grade two described by the assumptions (4.7), (4.10), (4.11), being in
the + region in homogeneous state (4.6), tends to:

a) a finite limit provided b,c, < —3b,V;

b) an infinite limit, provided byc, > —byV or —3b,V < byc; < —b, V.

Proof. Since f(z) < 0 and a(0) > O the denominator of (4.19) is always positive.
At first we consider the case of a finite limit of the denominator. It is possible if, and
only if, y < 0. Then, in the limit, we have

lim (—1— fﬁ(t)e_ Mdz) . . 2bs e
-0\23(0) —a(0) (b V+byc)UO)  a(0) 2PUO)

For this reason the behaviour in time of the solution (4.19) depends only on the
numerator. In view of (4.20), we have

~jn<'>d' (grﬂ(r)) {oo if y>0,
oU?(0) if y<0.

But these conditions are equivalent to
y > 0iff 35,V +b,c;, >0 and 7y <O0iff35,V+b,c; <0.
Hence the above together with n < 0 give
lima(t) = c0o if =3bV <be; < —=b,V,

=0

lima(f) =0 if bzcl < —3b4V.

f=+00
Now the unbounded denominator will be considered. In this case # must be positive
according to (4.23). It follows the positive value of y. Since the all terms on the right
side of (4.19) are finite except for (oU?(¢))? in the numerator and (oU?(?))" in the de-
nominator (cf. 4.21), therefore the limit value of a(z) depends on the value at infinity

of the ratio ((9 U’Et))))" (U(1))**-". But 2(y—7) = 1 and hence

lima(t) = 00 if % >0, ie byc, > —b,V.

=0

(4.24) lim e

=00

For the case of the negative initial amplitude a(0) we formulate
THEOREM 4. Let a(0) < 0. In the case considered (cf. Theorem 3) we have the following
global behaviour of the amplitude a(t):
a) If a(0) < —w, then there exists a finite time ty, given by
1

1 rf 1 2V \n
4,25 o= ——leurO)7[— — _ ) —(ev2 o))\,
. ; W’{(e @) (}/ev(m a(O)l/e) ( ())}

such that
lim a(f) = — oo.

1=+t
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b) If a(0) > —w, then
lima(?) = —o0 if —3bV <byc, < —b4V,

=00

lima(f) = 0 if bye, < —3b, V.

=00

Proof. a) From the equality (cf. Theorem 2, point 2a)

= L u(x)ds
f i ! a(O)

we have (4.25). Obviously, lim a(#) = —co. b) In order that a(0) > —w and 2(0)< 0

.r-rm

be possible it must be assumed that w > 0, which is to say that the integral

J ueyds

fﬁ()

tends to a finite limit as ¢ goes to infinity. But it is a case of (4.23), in which b,V +
+b;¢; < 0. For this reason the denominator of (4.19) is always negative and has a finite
limit. It implies that the limit value of a(#) is finite if < 0 and is infinite if ¥ > 0 (cf.
proof of Theorem 3). These conditions together with negative 7 give the complete proof.

Let us notice that the part b) of Theorem 4 in comparison with the point 2b) of
Theorem 2 gives a new result in the investigation. This is partially understood by the

fact that the condition [ |()|dt = oo is not satisfied in our case, because
0

0 «© _ _;_ 1
(4.26) of 1B()\dt = ofm Vo (by +2by(Eo+ V1)) 2dt = VOO)

Appendix

Remark 1. The material trajectory ) of the acceleration wave propagating into
a material of grade two described by (4.7), (4.10), (4.11), being in a homogeneous state
(4.6), is the set (the curve)

(A.D) 2 = {(Y(t), 1)eBx[0, 0): Y(2) = Yo+ o7~ 36 % U’(:)}

where U(t) = l/‘w and Y(0) = ¥, —

at which the wave is to be found at time ¢ = 0.
The proof of the remark above is a simple consequence of the definition of the in-
trinsic velocity U(?) (given in Sec. 2) and the relation (4.14) for U(t).

U3(0) is the material point

SbV
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Remark 2. The amplitude of the acceleration wave in that case has the form

(A2) a(t) = : = oU%(0)
a(0) 21;&;’ {(eU*(0)"(eU*(1))"— (eU*(0)) 2 }
where

3b,V+byey _bV+b,e,

v > 1T Tany
and a(0) is the initial value of the amplitude. The proof of this proposition follows direct-
ly from (4.19)-(4.21).

Remark 3. If the initial amplitude a(0) is equal to the initial critical amplitude
with the opposite sign —w, then the solution (4.19) has the form

eU?(0) = by +2b,Ey, y =

(A3) a(t) = 2»VU(¢)

with the property

(A4 lima(z) = — oo0.
=00
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