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On the global behaviour of one-dimensional acceleration waves 
in a material with internal variables 

w. KOSINSK.I (WARSZAWA) 

AMPLITUDE of one-dimensional acceleration waves propagating through a material which is 
described by the strain and the internal variable vector is investigated. It is shown that the 
amplitude of the wave obeys the Bernoulli equation. The propositions on the local and global 
in time behaviour of the amplitude are formulated. A wave entering a homogeneous state 
of a material of grade two is precisely discussed. 

Zbadano amplitud~ jednowymiarowych fal przyspieszenia, rozprzestrzeniaj~cych si~ w materiale, 
opisywanym przez odksztalcenie i wektor parametr6w wewn~trznych. Wykazano, i.e amplituda 
fali spetnia r6wnanie Bernoulliego. Sformulowano wnioski dotyc~ce Iokalnego i globalnego 
w czasie zachowania si~ amplitudy. Szczeg6lowo om6wiono fal~ poruszaj~~ sic; w jednorod­
nym stanie materialu drugiego rzc;du . 

.licc.ne~OBaHa a.MIIJIHTY~a OAHOMepHbiX BOJIH yCKopemm pacnpoCTpawn<>~HXC.R B MaTe­
puane, OIIHCbiBaHHOM ~e$opMaiU~eH H BeKTOpOM BHYTPeHHHX napaMeTpOB. ,I{OKa3aHO, 'ITO 

aMIIJIHTy~a BOJIHbi y~oBJieTBop.ReT ypasHeHmO EepuyJIJIH. C$opMyJIHpOBaHbi B&mOAJ>I, Ka­

caroumec.R JIOI<aJibHoro H rno6aJibHoro so BpeMeHH nose~emm a.MIIJIHTYA&I. Tio~Ho o6-
cy~eHa BOJIHa ~~a.RC.R B OAUOpO~OM COCI'O.RHHH MaTepHana BTOporo nop~. 

1. Introduction 

IN nrn PREVIOUS paper [4] an analysis of acceleration waves in a material with internal 
parameters was given. There it was assumed that the internal dissipation of a rheological 
material could be described by n internal scalar variables (parameters). Here the same 
assumption is done. But now we neglect the thermal effects. 

The object of this paper is to investigate the behaviour of the acceleration wave am­
plitude in the material under consideration in the case of one-dimensional theory. 

The governing differential equation obtained in Sec. 2 is of Bernoulli type. In Sec. 3 
the propositions on the local behaviour of the amplitude are formulated. The theorem 
on global behaviour of amplitude given in this section enables us to state the existence 
of the critical initial amplitude. 

In Sec. 4, a wave entering a homogeneous state of a material of grade two is precisely 
discussed. Furthermore, the solution of the general initial value problem in terms of 
homogeneous strain functions is obtained. 

2. 'Ibe amplitude and the velocity of acceleration waves 

We shall identify a body with an open region fJl which is its image in the fixed ref­
erence configuration x. The motion of a body is defined by a function x: fJl x R ~ R; 
the value x = x(X, t) determines the location x at time t of the material point X. By R 
we denote a real axis. 
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232 W. KOSINsiCI 

In the paper, acceleration waves will be discussed. It means that we shall consider 
the motion x of the body f!l, which is a twice continuously differentiable function on 
~ x R, except for jump discontinuity across some curve 2. This curve may be interpreted 
as a material trajectory(!) of the acceleration wave. In other words the curve 2 has the 

property: the second derivatives of x have jump discontinuities across 2 only and are 
continuous in both variables X and t everywhere else. 

If (Y(t), t) e 2, then Y(t) is the particle at which the wave is to be found at timet 

and U(t) = ! Y(t) is the intrinsic velocity of the wave. We assume that U(t) :F 0. 

In the motion x with an acceleration wave, the derivatives 

(2.1) E(X, t) = :xx(X, t)-1, x(X, t) = ~~ x(X, t) 

are continuous but 

(2.2) 
a2 .. a2 

oxE(X, t) = oX2 x(X, t), x(X, t) = 
012 

x(X, t) and 
. a2 

E(X, t) = axat x(x, t), 

as well as the higher derivatives of x have jump discontinuities. 
Let(l) 

a (t) = [x] (t) :f: 0 

be the amplitude of the acceleration wave. 
The compatibility condition [6] 

(2.3) 
d . 
dt Ul = ff]+Ufoxfl 

with f = x and E implies that 

(2.4) - U[EJ = U 2 [oxE] =a. 

In the present paper a material in particle X of the body f!l is defined by the 
constitutive equation for the stress ([4, 5]) 

(2.5) T(X, t) = :T(E(X, t), !~(X, t)) for t e [0, oo), 

which is supplemented by the evolution equation for the internal variables !X 

(2.6) &(X, t) = A(E(X, t), cx(X, t)) for t e [0, oo) 

with the initial data cx(X, 0) = cx0 (X). 
Here ex represents n scalar internal state variables (parameters) which are introduced 

to describe the internal dissipation of a rheological material. 
If A: (- 1 , oo) x R" --+ R" is a continuous function of its variables and Lipschitz con­

tinuous with respect to the second variable then, for each vector cx0 and a continuous 

(1) Cf. [4] and the literature cited there. 
(2) We use the well-known notation: for a function f(X, t), [f) = J-- f+ with/± = lim /(X, t). 

x~Y<t>:t 
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ON TilE GLOBAL BEHAVIOUR OF ONE-DIMENSIONAL ACCELERATION WAVES 233 

strain function E( · ) on [0, oo) there exists a unique continuously differentiable solution 
of the problem (2.6)(3). 

Hence in a motion with an acceleration wave we have (cf. [2-4]) 

(2.7) [oc] = [a] = o 

and by (2.3) with f = oc 

(2.8) [Bxoc] = 0. 

In following considerations we assume that the constitutive function IT is C2-class 
and the function A is C1-class in their domains. 

Let f! denote the mass density in the reference configuration "· Then the law of motion 
in the presence of a body force b is of the form 

(2.9) 

on either side of the wave and across the wave 

(2.10) [Bx T] = [ex] 

after the assumption that the force b is C1-class. 
Using (2.4) and (2.10) we have the expression for the velocity of the wave (cf. [2-4D 

(2.11) f!U2 (t) = BEIT(E(Y(t), t), oc(Y(t), t)), 

where the smoothness property for the constitutive function IT was used. 
We shall attempt to find the equation which describes changes of the amplitude 

a(t) = [x] (t). 
LEMMA 1. The amplitude of an acceleration wave propagating into o material with in­

ternal state variables satisfies the equation 

(2.12) 

where 

(2.13) 

da {J 2 dt= -.ua+ a, 

.u(t) = - - 1-{e dU(t) + -1-ai~ i+- BiiT(BxE)+ 
2eU dt U(t) 

Bi~T 
{J(t) = - 2U(t)8EIT. 

+ u~t) a.ff.aEA+ u~t) a.aEff·«-a.aEff.ax«}, 

The derivatives BiiT, Brr.~, BEA and Brr. BElT are evaluated at (E(Y(t), t), oc(Y(t), t)) and 
li and Bxoc at (Y(t), t). 

Proof. Equations (2.3) and (2.4) yield 

(2.14) .. 1- d ( a ) ... • 2.,.u dt yu =[x]-U2 [BxEl· 

(l) In [5] the theorem of existence and uniqueness of (2.6) was formulated. 
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Differentiation (2.9) with respect to time t gives on 2 

(2.15) 
... 1 . 

[x] = -[oxTJ. 
(} 

W. KOSINSKI 

After using (2.5) and (2.6) and the smoothness assumptions about !I and A we have 

(2.16) [axTJ = oE!I[axEJ+oi!I[EoxEJ+o11 !1·oEA[axE] 

+aa.aE!I· (~[axE] +axoc[EJ), 

where (2. 7) was used. 

If the following equality for two arbitrary functions having jumps across 2 is used 
in (2.16) 

(2.17) [fh] = [f] [h]+J+[h]+h+[j], 

then substituting the result into (2.14) and after using (2.4) we have (2.12) with (2.13). 
Notice that the coefficient p,, defined by (2.13)1 , depends on the rheological (i.e. elastic 

and inelastic) properties of the material; it also depends on the strain rate, strain gradient, 
rate of the internal variables and on the gradient of the internal variables just ahead of 
the waves. On the other hand, the coefficient {J, defined by (2.13)2 , depends on the elastic 
properties of the material alone. 

In the equation (2.13) the derivative dUfdt takes place. By an additional calculation, 
this derivative may be determined. 

LEMMA 2. At an acceleration wave 

(2.18) ~~- = 2 ~(} (ai!l E,+ +aa.aE!I· oc) + 2~ (ai!l(axE)+ + oa.ax:T · axoc), 

where ai !I and aa.axff are evaluated at (E(Y(t), t), oc(Y(t), t)). 
Proof. Let us notice that the operator of differentiation dfdt has the form 

d a a 
(2.19) dt = 7ii + u ax. 

If we apply (2.19) to (2.11), we obtain{4
) 

(2.20) 

where the homogeneous mass distribution was assumed. 
Finally we have 
THEoREM 1. The amplitude of an acceleration wave propagating into a material with 

internal state variables satisfies the equation (2.12) with p, defined by 

(2.21) I' = - 2~e { 23U (ai9' i;+ +a.a.ff · Ot)- ~ (aiff(axE)+ Hla.ff ·axil) 

+ ~ a.ff.a.A} 
and fJ defined by (2.13)2 • The velocity U is defined by (2.11 ). 

(
4

) Let us notice that in (2.20) the values in - region can be taken, because j+ + U(oxf) + = /- + 
+ U(oxf)- if [f] = o. 
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3. Local and global behaviour of the amplitude 

In what follows we assumed that the velocity of the wave is positive U(t) > 0. It 
follows from(5) (2.11) and (2.13) that 

(3.1) sign{J(t) = -signoiff(E(Y(t), t), oc(Y(t), t)). 

Hence we can formulate the following propositions for the local (in time) behaviour 
of the amplitude a(t). Before proceeding to state these results let us define A.(t) and E(t) 
by the relations 

(3.2) 
- p,(t) -

A.(t) = {J(t) , E(t) =Biff(E(Y(t), t)) oc(Y(t), t)). 

PROPOSITIONS. I. At any instant t, if either E(t) < 0 and a(t) < A.(t) or E(t) > 0 

and a (t) > A.(t), then :t la(t)l < 0. In particular, if either sign a(t) =sign A.(t) = signE(t) 

and la(t)l > IA.(t)l or sign a(t) = signA.(t) = -signE(t) and la(t)l < IA.(t)l, then 

d 
(3.3) dt la(t)l < 0. 

2. At any instant t, if either E(t) < 0 and a(t) > A.(t) or E(t) > 0 and a(t) < A.(t), 

then :t la(t)l > 0. In particular, if either 

(3.4) signa(t) = signA.(t) = signE(t) and la(t)l < IA.(t)l 

or 

signa(t) = signA.(t) = -signE(t) and la(t)l > IA.(t)l, 

then 

(3.5) 
d 

dtla(t)l > 0. 

3. At any instant t 

(3.6) a(t) = A.(t) if, and only if, da(t) = 0 dt . 

The proofs of the above results are simple consequences of (3.1) and of the properties 
of Bernoulli equation (2.12) written in the form 

(3.7) 
da dt = {Ja(a-A.). 

Let us notice that the statements 1-3 are true under the assumption {J(t) =F 0 for 
t ~ 0. It follows that E(t) must be nonvanishing; in other words] 

(3.8) 

( 5) In physical applications of the present theory we expect to have oEff > 0 because OE~ < 0 
leads to a purely imaginary value of U. 
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Physically, the condition (3.8) states that the constitutive function :T is non-linear 
in the strain (i.e. the elastic response of the material is non-linear). 

Further, the statement 3 does not imply that the wave is steady, i.e. has a constant 
amplitude over all the period of time, for A.(t) may increase or decrease during the 
period. The wave can have a constant amplitude over some period of time only 
if dA.(t)fdt = 0 during this period. 

To investigate the global behaviour of the amplitude we apply the results of BAILEY 

and CHEN [1]. 
Now we assume that I' and {J as the functions of t from the interval [0, oo) are in­

tegrable on every finite subinterval from [0, oo) and that for all t e [0, oo) either(6) 

(3.9) signE( t) = + 1 or signE( t) = -1. 

Additionaly we shall assume that {J is bounded away from zero; it is equivalent to 
the requirement 

(3.10) lim infi{J(t)l #: 0. 
t-+00 

The above assumptions enable the formulation of the following theorem, which is 
due to that of BAILEY and CHEN. 

THEOREM 2. 1. Suppose that sign a(O) = -sign{J(t). If A is bounded above (below) or 
tends to a non-negative (non-positive respectively) finite or infinite limit, then the same is 
true for any solution a(t) > 0 (a(t) < 0 respectively), t ~ 0. 

2. Suppose that signa(O) = sign{J(t). Let 

(3.11) 
1 

(J) = --. --,---. 
00 - f ll(~)d~d J ltJ(t)l e 0 t. 

0 

a) If la(O)I > w, then there exists a unique finite time 100 > 0 such that 

t 00 t 

f -f ll(~)d~ 1 
{J(t)e 0 dt = a(O) 

0 

(3.12) 

and 
lim la(t)l = oo. 

00 

b) If J lfJ(t)ldt = oo and la(O)I < w, then lim infla{t)l = 0. 
0 1-+00 

In view of the results above on the global behaviour of the amplitude a(t), the number 
w, defined by (3.11), is called the critical initial amplitude. The magnitude of the initial 
amplitude a(O) of the acceleration wave compared with the critical initial amplitude w 
decides whether the acceleration wave amplitude grows without bound over a finite time 
interval or remains bounded at all times. The former conciusion, of course, suggests that 
a shock wave is produced. 

( 6) Condition (3.9) states: for each fixed cxo the stress-strain law T = ff(E, cx0 ) is either concave 
from above or concave from below. 
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Let us notice that in the special case, when p, and P are non-zero constants, i. e. p,0 

and Po respectively, it follows from (3.2) and (3.11) that 

(3.13) /to 'f o co = I Pol 1 #o > and co = 0 if p 0 < 0. 

The expression (3.13) is equal to I.A.ol; in view of the paper [2] it means that for constant 
coefficients of the governing equation the critical initial amplitude turns into the critical 
initial amplitude for the acceleration waves propagating into the material which has been 
at a homogeneous equilibrium state. 

4. A wave entering a homogeneous state of a material of grade two 

We consider here an acceleration wave which since time t = 0 has been propagating 
into a region which is in a homogeneous strain with the vanishing extrinsic body force,. 
that is b = 0 in (2.9) and for all t ~ 0 and X> Y(t) 

(4.1) axE(X, t) = 0. 

Additionally, we assume that the initial distribution of the internal variables £Xo is homo­
geneous, too. 

For such a case the initial value problem (2.6) for the internal variables has homo­
geneous solution only, for t ~ 0 and X > Y( t). Therefore the distribution of the stress 
is also homogeneous {cf. (2.5)). 

It appears that in the case under consideration the problem of finding the deformation 
which fulfils the condition above reduces to the solution of the following initial value 
problem [cf. (2.6) and (2.9)] 

(4.2) V = 0, E = axv, oc = A(E, IX) 

with given v(O) = Vo' E(O) = Eo' ~X(O) = IXo such that axE = 0, ax £%(0) = 0. Here, the­
dependence of v, E and £X on X is not denoted explicitly. In the equations (4.2) v denotes 
the velocity function of the particles during the motion with the displacement function 
u. Hence we can write 

(4.3) V= u, E = axu, 

where u(X, t) = z(X, t)-X. 
The solution of ( 4.2) in the class of the homogeneous strain functions E is of the form 

(4.4) E(t) = E(O) + Vt, v(t) = V(X -X0 ) = v(O), V= const > 0 

with ~X( t) as the solution of the equation 

(4.5) ci(t) = A(E(O)+Vt, ~X(t)), ~X(O) = £Xo. 

The solution of (4.2) is unique under the condition that the solution of (4.5) is unique('). 
Now, we can pass to the problem of the propagation of the wave. 

C) Cf. sec. 2, where the conditions of uniqueness and existence were formulated. 
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The assumption about the material ahead the wave enables us to formulate the follow­
ing condition: for all t ~ 0 and X> Y(t), i.e. in + region, 

(4.6) E(X, t) = Eo+ Vt' E(X, t) = V, oxE(X, t) = 0, O;rJX(X, t) = 0. 

The variables E and ex determine the state of a material. Hence we can say that in 
+ region the material is in a homogeneous state. 

We see that for such a wave the differential equation (2.12) cannot be solved explicitly 
for general materials. The knowledge of the derivatives of S" and A is necessary(8

). 

For this reason we consider the special case of material. We assume: 
a) the material [the constitutive equation (2.5)] is of grade two in the strain E and of 

grade one in one internal state variable ex; 
b) the function A in (2.6) is linear in both variables. 
These requirements mean that S"(E, ex) is a polynominal of degree 2 in the variable E 

and of degree one in the variable ex, but A(E, ex) is a polynomial of degree one in both 
variables. Hence we have 

(4.7) 
S"(E, ex)= b1 E+b2 ex+b3Eex+b4 E 2 +b0 , 

where b, c h i = 0, 1 , ... 4, j = 0, 1 , 2 are some physical constants. 
For that case of the material we shall compute the velocity U and the coefficients 

p and f1 of an acceleration wave propagating into the region in a homogeneous (strain) 
state. 

The derivatives needed have the forms 

oES"(E, ex) = b1 +b3 ex +2b4 E, o,S"(E, ex) = b2 +b3E, 

oiS"(E, ex) = 2b4, oE A(E, ex) = C1, o, oES"(E, ex) = b3. 
(4.8) 

From the reality of the wave we have 

(4.9) 

We know that the strain E varies the interval (- 1 , oo) but ex can be taken from the 
real axis(9

). Hence we have the first condition on the b's: 

(4.10) 

From the inequality 

b1 + 2b4 E > 0 for each E e ( -1, oo) 

we have 

{4.11) 

Let us notice that the conditions ( 4.1 0), ( 4.11) are sufficient only. 
For this reason instead of (4.8) we have 

(4.12) oES"(E, ex) = b1 +2b4 E, o,S"(E, ex) = b2 , oa.oES"(E, ex) = 0 

(
8

) Cf. (2.21) and (2.13h. 
(

9
) Here, we assume none of the restrictions of the range of ex. 
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and additionally 

(4.13) a~!T(E, (X) = 2b4 > o. 

239 

Since the wave enters the region in a homogeneous state [which is an equilibrium(1°) 
one if V vanishes in (4.6) and A(E0 , (X0) = 0], thus 

(4.14) U(t) = vb1 +2b4~E0 +Vt). 

For the coefficients p,(t) and {J(t) we have the expressions [cf. (2.21), (2.13)2 and (4.6)] 

() _ 1 {3 2 "+ !l }- 3b4V+b2 ct 
"' t - - 2U2 (t)e 2 oE!TE + Urz!TOE A - - 2(bt +2b4(Eo + Vt))' 

fJ(t) = _ a~!/ -b4 ve 
2U(t)oE!T y(b1+2b4(E0 +Vt))3 

(4.15) 

and for A(t) 

(4.16) 

In view of (4.15) we see that the coefficients p,(t) and {J(t) are integrable functions 
on every finite subinterval of [0, oo ). Additionally, the coefficient {J fulfils 

(4.17) sign{J(t) = -1. 

Unfortunately, the condition (3.10) does not hold in our case, because 

(4.18) lim lfJ(t)l = 0. 
t-HIJ 

Since all the assumptions of Theorem 2 are not satisfied, therefore we cannot apply 
the results of it. But in view of [1], the condition (3.10) is needed only in the proof of 
point 1 of that theorem. Hence the point 2a) is true here. We shall formulate it in terms 
of the constants b's and c's together with other cases of the global behaviour of the am­
plitude a(t). 

In that formulation the general form of the solution of the governing equation (2.12) 
will be helpful. Introducing the change of variable 

1 
d (t) = a(t) 

the Eq. (2.12) reduces to 

d 
dt d(t) = ftd(t)- {J. 

Since p, and {J are integrable on every finite subinterval of [0, oo ), the above equation 
has the solution 

t T 

f ~(T)dT { Jt -J ~(s)ds } 
d(t) = e0 d(O)- {J( 1:)e 0 d1: • 

0 

(1°) In [2, 3] the propagation of acceleration waves in a material in a homogeneous equilibrium state 
was considered. 
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Hence, for a(t) in (2.12) we have the solution 

(4.19) 

t 
- f p('r)d-r 

e o 
a(t) = ---------

' 'f 

1 J R( ) -~ p(s)ds 
a(O) -

0 
p T e dT, 

where a(O) is the initial value of a. 
In order to determine the critical initial amplitude w, we compute 

(4.20) 
I 3b4Y+ b2c1 

-J p(-r)d-r = ((!U2(t) )41i;Y 
e U2(0) ' (! . 

where in view of (4.14) the following denotation was used 

eU2(t) = b1 +2b4(Eo+Vt), eU2 (0) = ht +2b4Eo. 

Hence we have 
T 

W. Kos!NsiCI 

I -f II(•)IU _ _ lb4Y+b2c1 t 3b4Y+b2c1 

(4.21) J p( T)e 0 c:t = -b4 Ye (e U2 (0)) 4b v J (b1 +2b4(E0 + VT)) 4b.v x 
0 0 

x (bt +2b4(Eo+VT))-~dT = - b u;4~e {(eU2(0))-,(eU2 (t))'~-(eU2 (0))-iJ, 
4 + 2C1 

where 

(4.22) 

For the initial critical amplitude we have the following expressions [cf. (3.11) and 
(4.21)] 

w = 0 
(4.23) 

w=-

if 1J > 0, i.e. b4 V +b2c1 > 0, 

b4 V+ b2 c t U(O) = - 21] VU(O) if(u) 
2b4 

For the material under consideration we have [cf. (3.2), (4.11)] 

E(t) = 2b4 > o. 
We shall consider two distinct circumstances: 

signa(O)=signE(t)= +1 and signa(O)= -signE(t)= -1 

For the first case we formulate 

(
11

) In applications the condition b2c1 < 0 seems natural. Hence b4V+b2c1 < 0 is possible. 
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THEOREM 3. Let a(O) > 0. The amplitude a(t) of an acceleration wave propagating 
into the material of grade two described by the assumptions ( 4. 7), ( 4.1 0), ( 4.11 ), being in 
the + region in homogeneous state (4.6), tends to: 

a) a finite limit provided b2 c1 < - 3b4 V; 
b) an infinite limit, provided b2 c1 > -b4 V or -3b4 V < b2 c1 < -b4 V. 
Proof. Since {J(t) < 0 and a(O) > 0 the denominator of (4.19) is always positive. 

At first we consider the case of a finite limit of the denominator. It is possible if, and 
only if, fJ < 0. Then, in the limit, we have 

For this reason the behaviour in time of the solution (4.19) depends only on the 
numerator. In view of (4.20) 1 we have 

I 

(4.24) . -JI'(T)dT _ . ((!U2 (t))
1 

_ { 00 

11!_.~ e - hm eU2 (0) - 0 
if 'Y > 0, 
if 'Y < 0. 

But these conditions are equivalent to 

y > Oiff3b4 V+b2 c1 > 0 and y < Oiff3b4 V+b2 c1 < 0. 

Hence the above together with rJ < 0 give 

lim a(t) = oo if -3b4 V< b2 ct < -b4 V, 
1-+r:IJ 

lim a(t) = 0 if 
1-+r:IJ 

Now the unbounded denominator will be considered. In this case fJ must be positive 
according to (4.23). It follows the positive value of y. Since the all terms on the right 
side of (4.19) are finite except for (eU2 (t))" in the numerator and (eU2(t))'~ in the de­
nominator (cf. 4.21), therefore the limit value of a(t) depends on the value at infinity 

of the ratio ~~~:~:;~; = (U(t))'"-•'. But 2(y-'1) = I and hence 

lim a(t) = oo if fJ > 0, i.e. b2 c1 > -b4 V. 
1-+r:IJ 

For the case of the negative initial amplitude a(O) we formulate 
THEoREM 4. Let a(O) < 0. In the case considered (cf. Theorem 3) we have the following 

global behaviour of the amplitude a(t): 
a) If a(O) < -ru, then there exists a finite time too given by 

1 

(4.25) 1 {c 2 ))]_( 1 2fJv );; ( 2 )} too = 2b V (! U (0 'I .. I _ .. I _ - (! U (0) , 
4 r e U(O) a(O) r e 

such that 

lim a(t) = - oo. 
t-+t00 
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b) If a(O) > -w, then 

lima(t) = - oo if -3b4 V< b2 c1 < -b4 V, 
l-+00 

lima(t) = 0 if 
t-+00 

Proof. a) From the equality (cf. Theorem 2, point 2a) 

100 t 

f -f p('r)dT 1 
{1(t)e 0 dt = a(O) , 

0 

we have (4.25). Obviously, lim a(t) = - oo. b) In order that a(O) > -w and a(O)< 0 

be possible it must be assumed that w > 0, which is to say that the integral 

t 1' 

J {1( T)e-J p(s)ds dT 
0 

tends to a finite limit as t goes to infinity. But it is a case of (4.23h in which b4 V+ 
+b2 c1 < 0. For this reason the denominator of (4.19) is always negative and has a finite 
limit. It implies that the limit value of a(t) is finite if y < 0 and is infinite if y > 0 (cf. 
proof of Theorem 3). These conditions together with negative '1J give the complete proof. 

Let us notice that the part b) of Theorem 4 in comparison with the point 2b) of 
Theorem 2 gives a new result in the investigation. This is partially understood by the 

00 

fact that the condition J lf1(t)ldt = oo is not satisfied in our case, because 
0 

00 00 

(4.26) J IPU)Idt = J b4 ve(h1 +2h4(Eo+Vt))-~dt = v~(o). 
0 0 

Appendix 

R e m a r k 1. The material trajectory .2; of the acceleration wave propagating into 
a material of grade two described by ( 4. 7), ( 4.1 0), ( 4.11 ), being in a homogeneous state 
(4.6), is the set (the curve) 

(A. I) 2 = {(Y(t), t) e .\iW x [0, oo): Y(t) = Yo + Jb~ V U3 (t)}, 
where U(t) = Jl'b, +2b.~Eo+Vt) and Y(O) = Y0 - Jb:V U3(0) is the material point 

at which the wave is to be found at time t = 0. 
The proof of the remark above is a simple consequence of the definition of the in­

trinsic velocity U(t) (given in Sec. 2) and the relation (4.14) for U(t). 
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Remark 2. The amplitude of the acceleration wave in that case has the form 

(
eU2 (t) )Y 

a(t) = eU2 (0) 
-_-1=--+-Y...,......,e=--{-(e-U-2(-0)_)_-Y(_e_U-2(-t)-)'~---(e-U-2(-0)-) --~-} ' 

a(O) 21JV 

(A.2) 

where 

and a(O) is the initial value of the amplitude. The proof of this proposition follows direct­
ly from (4.19)-(4.21). 

Re mark 3. If the initial amplitude a(O) is equal to the initial critical amplitude 
with the opposite sign -w, then the solution (4.19) has the form 

(A.3) 

with the property 

(A.4) 
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