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On a mathematical theory of elastic-plastic materials 

GIANPIETRO DEL PIERO (PISA) 

THE FIRST part of this paper deals with the constitutive equation of the elastic-plastic material, 
regarded as a particular "rate-type" material. The results of the classical theories of plasticity 
are re-interpreted in terms of abstract properties of a "plasticity operator" which naturally 
arises from the analysis of the constitutive equation. The second part of the paper considers 
the incremental equilibrium problem. Existence and uniqueness of the solution are discussed, 
as well as the classical direct and complementary variational principles. 

Pierwsza c~ pracy dotyczy r6wnania konstytutywnego dla materialu spr~to-plastycznego, 
rozwai'.anego jako szczeg6lny przypadek materialu typu pr~kosciowego. Rezultaty klasycznych 
teorii plastyczno8ci sq, przetlumaczone na j~zyk abstrakcyjnych wlasnosci "operatora plastycz
nosci", kt6ry wynika w spos6b naturalny z r6wnania konstytutywnego. W drugiej cz~ci pracy 
rozwai'.a si~ problem r6wnowagi przyrostowej. Przedyskutowano zar6wno istnienie i jedno
znaczn<>SC rozwiq,zania, jak r6wniez bezposrednie i uzupelniajq,ce zasady wariacyjne. 

IIepBaH qaCTL pa6oT&I KacaeTcH: onpe.z:temno~ero ypasHemm ,wm ynpyro-IIJiaCTHlleCl<oro 
MaTepua.na, paCCM&TpHB&eMoro I<8K qaC'l'Hldit CJiyqait MaTepHana Cl<opoCTHoro THIIa. Pe-
3YJILTaTbi KJiaCCHqeCI<BX TeOpHit DJiaC'l'IAHOCTH nepeBe,IteHbi Ha H:3bll< a6CTpai<THX CBOHCTB 
"oneparopa IIJiaC'l'HtiHOCTH", I<OTOphrli eCTeCTBeHHbiM o6pa30M CJie,ItyeT H3 onpe.z:temno~ero 
ypasHeHWJ:. Bo sropoii qaCTH pa6oTbi paCCMOTpeH& npo6neMa paBHOBeCHH: B npupoCTaX. 
06cy>I(Jl;eH&I Tal< ~eCTBoB&HBe H e,ItHHCTBeHHoCTL pemeHHH:, I<8K H Henocpe.z:tCTBeHHhle 
H ,I{OnOJIHBTeJILHble BapH~OHHble np~. 

1. Introduction 

IN RECENT years, considerable effort has been devoted to fitting the plasticity theory into 
the general framework of Continuum Mechanics. In particular, its relation to TRUESDELL's 
theory of hypo-elastic materials has been pursued by several Authors, as, for example, 
GREEN [1], PERZYNA [2], TOKUOKA [3]. Of special interest is a paper by PIPKIN and 
RlvLIN [4] where a theory of rate-independent materials is developed which includes 
classical plasticity as a special case. This approach is taken as the starting point of the 
present paper. The first part analyses some constitutive assumptions and extends PRAGER's 
kinematical hardening model to three dimensions, under the assumption of infinitesimal 
deformations. A constitutive equation is obtained in which the response functional de
pends only on the actual values of the stress, strain and strain-rate tensors, and allows 
the elastic-plastic material to be regarded as a particular "rate-type" material of the first 
order, in accordance with the definition given in [2]. 

The form of the constitutive equation also suggests the introduction of a non-linear 
operator, denoted as the "plasticity operator". We shall prove that all the classical as-
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254 GIANPIETRO DEL PIERO 

sumptions and results can be given a more compact form in terms of this operator and 
we shall also establish some new results. For instance, the hardening rule, usually assumed 
completely independent of the constitutive equation, is here shown to be implicitly con
tained in it. Likewise, a rather natural classification of elastic-plastic materials is possible, 
in which the work-hardening and the perfectly plastic materials form two very special 
sub-classes of materials. 

The incremental equilibrium problem is next discussed, in strict analogy with the well 
known analysis due to KOITER [5]. However, the mathematical tools introduced with the 
definition of the plasticity operator allow us not only to prove the uniqueness theorem 
and the variational principles as in KoiTER's treatment, but also to establish an existence 
theorem, even if this is restricted to the class of work-hardening materials obeying the 
classical assumption of normality. 

2. Constitutive equations 

This Section is devoted to the deduction of the simplest constitutive equation for a 
plastic material. For this purpose, both geometrical and constitutive linearity is assumed~ 
but, of course, the latter assumption does not hold for the transition from an elastic to 
a plastic response, which is intrinsically non-linear. We also assume that time effects are 
unimportant, so that acceleration terms are disregarded in the equations of motion, and 
time does not appear explicitly in the constitutive equation. The latter hypothesis is not 
only consistent with the current definitions of plasticity as "a branch of rheology in 
which ..... time effects play a minor role" (DRUCKER [6]), but also conforms with the 
theory of rate-independent materials developed in [4]. 

The theory presented here is based on the observation that all elastic-plastic consti
tutive equations originate from the extrapolation of the familiar one-dimensional diagram 
given in Fig. 1. It is well known that the simplest representation of this type of material 
response is the incremental one, which, on denoting by (I dt, edt the stress and strain 
increments occurring in the time interval ( t, t + dt ), results in the following equations: 

{ 
a= Ai for la-Bel < (A-B)e0 , 

and for la-Bel = (A-B)e0 , e(a-Be) < 0, 
a= Bi for la-Bel = (A-B)e0 , e(a-Be) ~ 0. 

The two possible responses are called the elastic and the plastic response. A, B are 
the elastic and the work-hardening moduli respectively, and e0 is the strain corresponding 
to first yielding. 

This formulation can be given a more compact form by introducing the strains e', e" 
indicated in Fig. 1 and defined by the equations: 

(2.1) E = e' +e", a = Ae' +Be". 

Then, we may alternatively characterize the elastic response by the conditions: 

le'l < Eo, or le'l = Eo, EE
1 < 0, 

and the plastic one by 
le'l = Eo, BE

1 ~ 0. 
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ON A MATHEMATICAL THEORY OF ELASTIC-PLASTIC MATERIALS 255 

We observe that we have obtained a constitutive equation in which the response functional 
depends only on the present values of the strain s' and of the strain rate i: 

· (2.2) <1 = a(s', e). 

Particularly useful is the geometrical interpretation of s', s". To any point P of the (a, e) 
plane, let us associate the segment of the s-axis 

which will be denoted as the elastic range. The constitutive equation written above en
sures that an elastic response occurs as long as the projection of P in the e-axis falls 

FIG. 1. One-dimensional stress-strain diagram for 
an elastic-plastic material. 

within the elastic range. When it moves outwards, it is "followed" by the elastic range. 
This is the well known PRAGER kinematical hardening model, in which the strains s', s" 
represent the position of the projection of P in the elastic range and the translation of 
the latter with respect to the origin. 

These concepts can be extended to the three-dimensional case in a rather spontaneous 
way. It is worth noting that an incremental form for the constitutive equations is adopted 
in the flow theories of plasticity, with, however, the additional assumption of dependence 
of the response functional on the strain history (NAGHDI [7] p. 143, K.ACHANOV [8] p. 44, 
77, 83, BLAND [9], PIPKIN and RIVLIN [4]). Only HILL ((10], p. 24) does not make this 
assumption. 

We begin our discussion by introducing some concepts and notation. Henceforth, we 
let a, e denote the CAUCHY stress tensor and the infinitesimal strain tensor, respectively. 
They are to be regarded as the elements of two six-dimensional vector spaces, the stress 
space "1/ a and the strain space "Ya. By the usual identification of equidimensional finite 
vector spaces, we can define the scalar product 

3 

a· b = }; atJbtb with a E "Ya, bE "Y8 • 

i,j=l 
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The sum decompositions (2.1) for u, e are still assumed to hold, but now A, B de
note fourth-order tensors, called the elastic and the work-hardening tensors respectively, 
which are regarded as linear mappings of "f'"(/ onto 1""1 • We assume that A, Bare sym
metric in the sense that 

A a · b = Ab · a for any a, b e "f'" 1 • 

A restriction is imposed on A, B by the requirement that the Eqs. (2.1) define a one-to-one 
correspondence between the pairs ( u, e) and ( e', e''), and implies that the tensor (A- B) 
be non-singular. This can be seen from the inversion of system (2.1), which gives: 

e' = (A-B)- 1(u-Be), 

e" = (A-B)- 1(Ae-u). 

The elastic range is defined as the closed domain of "Y 1 : 

(2.3) f(e') ~ 0, 

whose boundary is called the yield surface. The vector e" represents the translation of the 
elastic range from its initial position corresponding to the natural state. The second
order tensor 

(2.4) n(e') = [ df(~') J 
de /(a')=O 

represents the normal to the yield surface in the space "f'".. It is denoted as the exterior 
normal because, due to the lneq. (2.3), it points outwards from the elastic range. Note also 
that, in general, it is not a unit vector. We assume that the yield surface is sufficiently 
smooth to ensure uniqueness of the normal at any one of its points. 

We come now to the problem of characterizing the elastic and the plastic response. 
We suppose that the pair (a, e), and hence (e', e"), is given. Then, we have to express 
the stress-rate u as a function of e. But equations: 

(2.5) e = e' +e", ;, = Ai' +Be", 

deduced formally by time differentiation of the Eqs. (2.1), show that actually our problem 
is equivalent to specifying the sum decomposition (2.5)1 of the strain-rate vector. Elastic 
and plastic responses consist in two different specifications of this decomposition. 

We characterize the elastic response by i" = 0 or, equivalently, by the fact that the 
elastic range remains fixed in the space r .. This is assumed to occur, firstly, when the 
point e' is interior to the elastic range and, secondly, when it is on the boundary, but the 
vector e points inwards, i.e. both whenf(e') < 0 andf(e') = 0, e. n < 0. The remaining 
possibility is f(e') = 0, e · n ~ 0, and corresponds to a response of the plastic type. We 
assume that it is characterized by the two conditions 

(2.6) e'n = 0, e" = J.m. 

The first of these conditions states that the point e' remains on the yield surface during 
plastic response, while the second means that the direction of e" is fixed at any point 
of the yield surface. Clearly, the vector field m = m(e'), defined on the yield surface, 
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determines this direction (Fig. 2). The scalar A can be obtained by substituting the 
Eq. (2.6)2 into the Eq. (2.5)1 and then multiplying scalarly by n: 

(2.7) A= in. 
mn 

If we direct m outwards from the elastic range, so that 

(2.8) mn > 0, 

and recall that during plastic response en ~ 0, we have that A is always a non-negative 
number. 

The set of constitutive assumptions made above can be collected into a single equation, 
which will be taken as the constitutive equation of the elastic-plastic material: 

0 for f(e') < 0, 
and for [(e') = 0, en< 0, 

(2.9) i1 = Ae' +Be", e" = 
en -m for f(e') = 0, en~ 0, mn 

., 
e = . .,, 

e-e . 

It is immediately seen that, since m, n are known functions of e', this is an equation 
of the form (2.2) and therefore represents the desired generalization of the one-dimensional 
case examined before. We observe that en = 0 implies e" = 0, and so the corresponding 
response can be regarded as elastic as well as plastic. This situation is usually designated 
as neutral loading, and represents a continuous transition between the elastic and plastic 
responses. 

It is worth noting that the elastic-plastic material defined by the Eq. (2.9) can be 
regarded as a particular rate-type material, in accordance with TR.UESDELL and NOLL's 
classification (see [11], Sec. 36). 

FIG. 2. Decomposition of the strain-rate vector 
at plastic response. 

The same approach may successfully be applied to the cases where constitutive linear
ization is absent. Figure 3 shows a one-dimensional scheme exhibiting non-linear harden
ing. Such schemes are often used to account for change in shape of the elastic range 
during loading (see e.g. BALTOV and SAWCZUK [12]). Although the one-dimensional 
constitutive equation can obviously be given the form (2.2), we shall not deal here with 
the problem of its generalization to three dimensions. 
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3. Comparison with the classical theories 

GIANPIETRo DEL PmRo 

FIG. 3. Non-linear hardening and 
change in shape of the elastic range. 

The constitutive equations presented above agree with those of PIPKIN and RIVLIN 

in taking e as an independent variable and iT as the dependent one. This contrasts with 
the choice customarily made in the classical theories. As outlined in the preceding Section, 
the new choice is motivated by its accordance with the more general theory of rate-type 
materials. As a consequence, the yield condition has been expressed in terms of strain 
rather than of stress. 

Another difference between the classical theories and this approach is the decomposi-
tion (2.1)1 of the strain tensor, which replaces the usual decomposition into an "elastic" 
and a "plastic" part, given by 

where 

Comparison with Eqs. (2.1) shows that the "plastic strain" eP is related to the strain 
e" by 

(3.1) e~ = A-1(A-B)e". 

The two decompositions are equivalent, in the sense that they can be derived from each 
other, provided that A, (A-B) are non-singular. 

The reasons for preferring the new choice will become apparent after a discussion 
of the two basic assumptions in the classical theories, which are known, respectively, as 
the flow and the hardening rule. 

The flow rule specifies the direction of the plastic strain-rate eP during the plastic 
response, and is equivalent to our assumption (2.6h, since eP is determined by Eq. (3.1). 
The most common flow rule is the associated flow rule. This is also known as the assump-
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tion of normality(l). To discuss this rule we must formulate the yield condition in terms 
of the stress. Hence, let us define in the stress space "f" a the vector 

a'= As' 

and the surface 

(3.2) g(a') = f(s') = 0 

representing the yield condition in terms of stress. The exterior normal is then 

_ dg(a') _ df(s') _ A_ 1 df(s') 
na - (f(T - d(As') - dT' 

By introducing the normal n in "f", defined by the Eq. (2.4) we arrive at the following 
expression for na: 

(3.3) 

Normality means that the vector f:P is assumed to be parallel to na. With the help of 
the Eqs. (3.2), (3.3) we may state this assumption in the form 

(3.4) (A- B)i" = J.n 

or, on recalling Eq. (2.6h, in the form 

(3.5) (A-B)m = n. 

In order for the scalar ). appearing in the Eq. (3.4) to be the same as in the Eq. (2.6h, 
we must obviously define the modulus of the vector m in an appropriate way. 

Besides normality, other flow rules, called non-associated, are sometimes considered. 
They consist in postulating the existence of a plastic potential, i.e., of a scalar function 
h = h( a') defined in the elastic range and such that 

(3.6) 

From our viewpoint, this assumption turns out to require a certain regularity of the 
vector field m(s'), which itself is closely connected to eP by the Eqs. (2.6h, (3.1). Upon re
garding h( 0'') = 0 as the equation of a surface in the stress space, the geometrical inter
pretation of the function h(O'') becomes clear. It is also easily verified that for h = g the 
associated flow rule is obtained. 

Let us now examine the hardening rule. This law specifies the translation of the yield 
surface during the plastic response. In the classical theories, this law has no connection 
with the constitutive equation, being a completely independent assumption. In this ap
proach, however, the translations of the yield surface in the strain and stress space, being 
e", Be" respectively, are specified by the constitutive equation (2.9) itself, so that no 
further assumption is needed. Thus, a knowledge of A, B and of the vector field m ac
counts both for the flow and the hardening rule and reveals the mathematical nature of 
these assumptions. 

(2) The two terms denote assumptions having a different historical origin. Their equivalence was 
discussed in a paper by BLAND [9]. 
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A priori connections between A, B and m can be established by particular flow and 
hardening rules. For instance, the assumption of normality leads to the Eq. (3.5). 
Another interesting relation is given by the PRAGER hardening rule, which states that 
the yield surface in stress space moves parallel to n(l = A- 1n: 

(3.7) 

p. being a scalar multiplier, called the work-hardening factor. When combined with 
normality, this assumption leads to 

(A-B)m = pABm. 

and, as this holds for any m, we deduce 

A-B= !JAB, 

or, pre-multiplying by A- 1 and post-multiplying by B-1 

(3.8) 

I being the identity operator. Then, the proper vectors of A, B are parallel and their 
proper values ex,, {11 are connected by the relation 

ex, 
fJ, = 1 +!"ex,· 

It is interesting to observe that the same result may be obtained by combining ZIEGLER's 
hardening rule [13]: 

Bm = p,Ae' 

with the particular non-associated flow rule 

(A-B)m = e' 

which may be interpreted as the equation of a sphere in stress space, as it results from 
the Eqs. (3.6), (3.2). The same manipulations as above lead again to the Eq. (3.8). 

4. lbe plasticity operator 

In Section 2 the elastic-plastic material has been defined as a material having the 
constitutive equation (2.9). This equation will be considered here under the equivalent 
forms 

(4.1) iJ = Ae-(A-B)e", iJ =Be +(A-B)e', 

obtained simply by substitution of Eq. (2.5)1 into Eq. (2.9). It is assumed that the linear 
operators A, B are symmetric and non-singular, and that £" is a function of e and of the 
point e' of the elastic range, as specified by Eq. (2.9) itself. 
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If we suppose that the point e' is kept fixed, the above equation can be given the form 

(4.2) a= He, 

where H = H(e') can be regarded as a non-linear mapping of "Y, onto "Y, defined at 
any point of the yield surface. In the following, H will be denoted as the plasticity 
operator. This Section is devoted to the study of those of its properties, which will be of 
later use in the discus~ion of conditions for the existence and the uniqueness of the solu
tion of the "incremental" equilibrium problem. 

We begin by recalling some definitions. An operator H is said to be positive-definite 
(semi-definite) if the product He· e is positive (non-negative) for any e =I= 0. It is said to 
be monotonic (weakly monotonic) if the product (He-He*)· (e-e*) is positive (non
negative) for any pair of distinct vectors e, e*. The notation H > K (H ~ K) means that 
the operator (H- K) is positive definite (semi-definite). It is well known that monotonicity 
implies positiveness; but for the plasticity operator it will be shown that the converse is 
also true. 

THEOREM 1. (Weak) monotonicity of H implies and is implied by the positive (semi-) 
definiteness of H. 

Proof. The first assertion follows trivially from the definition of monotonicity, 
taking for instance e* = 0. To prove the converse, we assume that H is positive definite 
and we take two arbitrary vectors e, e*. No generality is lost in assuming that e · n ~ 
~ e*n, so that 

(4.3) 
(e-e*)"n = (e-e*). n ~ (e" -e*")n ~ 0, 

(e*- e)"n = o, 
as can easily be verified with the aid of the constitutive equation (2.9). The positive de
finiteness of Htogether with the Eq. (4.1) 1 next shows that for the vectors (e-8*), (i*-e) 
we have 

(4.4) 
H(i-e*) (e-e*) = A(i-8*) (8-e*)- (e-e*)n (A-B)m(e-e*) > o, 

mn 

H(i*- e) (e*- e) = A(e- i*) (e- s*) > o. 
What we have to prove is that 

(Hi-Hi*) (e-8*) = A(e-e*) (8-i*)- (e"-e*")n (A-B)m(e-e*) > o. 
mn 

If the product (A- B)m(s- e*) is negative, this follows immediately from comparison 
with the Ineqs. ( 4.3h, ( 4.4)4 ; if it is positive, the same result follows from the Ineqs. 
( 4.3h, ( 4.4)2 , and the theorem is proved. The modifications which are required when His 
assumed to be positive semi-definite are obvious. 

From the Ineq. (4.4)4 also follows the result: H positive definite implies A positive 
definite. The converse in general is not true. 

In the following, positiveness of the plasticity operator will be assumed. The product 
Hes will be called the incremental energy, and it will be used to give an energy definition 
of work-hardening and perfectly plastic materials. 

3 Arch. Mech. Stos. nr 2J75 
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At any point of the yield surface we define a purely plastic response as the response 
characterized by a strain-rate vector parallel to m. For such a response, we have from 
the Eq. (2.6h 8' = 0, and therefore the incremental energy becomes 

(4.5) He· e = B~". 8". 

By analogy with the one-dimensional case, we shall use the terms hardening, softening 
and perfect plasticity to characterize the sign of the incremental energy during a purely 
plastic response. 

DEFINITION 1. An elastic-plastic material is said to harden, to soften or to behave as 
perfectly plastic at a given point of the yield surface if the incremental energy evaluated 
at that point for a purely plastic response is positive, negative or zero. 

DEFINITION 2. A work-hardening material is an elastic-plastic material which hardens 
at any point of the yield surface. 

DEFINITioN 3. A perfectly plastic material is an elastic-plastic material which behaves 
as perfectly plastic at any point of the yield surfac~:. 

Work-hardening and perfectly plastic materials are therefore two very special cases 
of elastic-plastic materials. They may also be characterized in terms of the operator B. 
In fact, from the Eq. (4.5) and from the above definitions it follows that a positive definite 
B defines a work-hardening material, while B = 0 defines a perfectly plastic material. 
Equation (4.5) shows also that if H > 0, then the material is work-hardening, but the 
converse does not generally hold. 

We shall now discuss the assumption of normality and its mathematical implications 
for the plasticity operator. We begin by stating some lemmas. 

LEMMA I. Normality is equivalent to the two conditions: 

(4.6) (A-B)e" · e' = 0, (A-B)e" · e" > 0, for any e', e" ¥= 0. 

P r o o f. For elastic responses we have e" = 0, so that normality and the above 
conditions are compatible with each other. For plastic responses, the Eq. (2.6)1 states 
that the vector e' is tangent to the yield surface. Therefore, if the Eq. (4.6)1 holds for any 
e', the nvector (A- B)e" must be normal to the yield surface, and, conversely, if it is 
normal to the yield surface, the Eq. (4.6)1 holds. 

Moreover, the lneq. (4.6)2 can now be given the form 

A.e". n > 0 for any e" ¥= 0, 

and, as e" · n > 0 for constitutive reasons, it can be reduced to: A. > 0. This condition 
specifies that vector (A- B)e" points outwards from the elastic range, and, as this is ex
plicitly required in our formulation (3.4), (3.5) of normality, this completes the proof 
of the equivalence between normality and the statement (4.6). 

Note that if the yield surface is sufficiently smooth, vectors e" span the space "ff',. 
In this case, from the Ineq. (4.6h the positive definiteness of (A-B) can be deduced. 
This will always be assumed in the following. 

LEMMA 2. If normality holds, then 

(A- B)e" · e*' ~ 0 for any . '* e, e . 
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P r o o f. Substitution of the Eq. (3.4) into the above inequality yields: 

).e*'n ~ o. 
But A.~ 0, e*'n ~ 0, for constitutive reasons, and this proves the lemma. 

LEMMA 3. Normality implies that 

(A- B)ee* ~ (A- B)e' e*' +(A- B)e" e*", 

for any e, e*. When e = e*, the equality sign holds. 

263 

P r o o f. It is sufficient to replace e, e* by e' + e", e*' + e*" and to apply Lemmas 1 , 2. 

LEMMA 4. If normality holds, then 

(A-B) (e+e*)'(e+e*)' ~(A-B) (e' +e*') (e' +e*') for any • "* e, e . 

P r o o f. By using the Lemma 3 the above inequality can be given the form 

(4.7) (A- B) (e +e*)"(i +e*)" 
~(A-B) (i"-e*") (e"-e*")+2(A-B)e"e*+2(A-B)e*"i. 

Recalling that, by normality, 

(4.8) (A- B)£" = l ;: if en> 0, 

if en~ 0, 

it is easy to recognize that the Ineq. (4.7) is verified with the equality sign when both res
ponses are elastic and when they are both plastic. When one response, say e, is elastic 
and the other one is plastic, we have en > 0 ~ e*n. Then, if (e +e*)n > 0, substi
tution of the Eq. (4.8) into the Ineq. (4.7) and multiplication by the positive scalar mn 
gives the inequality: 

[(i +e*)n]2 ~ (en) 2 +2(en) (e*n); 

if ( i + e*)n ~ 0, the Ineq. ( 4. 7) becomes 

o ~ (en) [e*n+(e +e*)n]; 

both inequalities are satisfied for any e, e* with en > 0 ~ e*n. 

A fundamental property of operator H connected with the assumption of normality 
is given by the following 

THEOREM 2. Normality is equivalent to the limitations A~ H ~B. 
Proof. By multiplying the Eqs. (4.1) by e and by putting iJ = He, we have 

(A- H)ei = (A- B)e";; = (A- B)e" e' +(A- B)e" e", 

(H-B)ee = (A-B)e'e = (A-B)e'i' +(A-B)e'e". 
(4.9) 

Let us assume normality, or equivalently, that the Eqs. (4.6) hold. Then, the right-hand 
sides of the Eqs. (4.9) are non-negative, and A~ H ~B. Conversely, if A~ H ~ B, 
right-hand sides are non-negative for every e' e" and the Eqs. (4.6) hold. 

A first consequence of Theorem 2 is that, in the case of normality, positive definite
ness of B implies positive definiteness of H. In accordance with the definition of work
hardening given above, this means that, in the case of normality, work-hardening materials 
are characterized by H > 0 and vice versa. 

http://rcin.org.pl



264 GIANPIETRO DEL PIERo 

We shall now investigate the existence of the inverse operator to H, i.e., the existence 
of the operator n-1 defined by 

(4.9) 

For the elastic response we have simply e = A- 10'. For the plastic one, the constitutive 
equation 

(4.10) . . en (A ) a=Ae-- -Bm 
mn 

multiplied by na = A-1n gives: 

(4.11) • Bmna. 
ana= --en. 

mn 

If Bmna =1: 0, substitution into the Eq. (4.10) and multiplication by A- 1 give 

(4.12) . A-1· ilna A-1(A B) e = a+-- - m, 
Bmna 

and this defines n-1 in the case of plastic response. From this analysis it follows that: 
THEoREM 3. A sufficient condition for the existence of e-1 is that the product Bmna 

is different from zero at every point of the yield surface. 
It is interesting to observe that this condition is satisfied for a material obeying 

PRAGER's hardening rule (3. 7), which gives: 

Bmna = nana > 0. 

On the other hand, for ZmGLER's rule we have 

Bmna = e'n. 

It can be shown that positiveness of e'n leads to PRAGER's "consistency" condition on 
the shape of the yield surface (see e.g. [7], p. 141]. This condition requires that the points 
ae' with 0 ~ a < 1 must be interior to the elastic range whenever the point e' belongs 
to the elastic range. 

In the case of normality, we have from the Eq. (3.5) 

Bmna = BmA-1(A-B)m = (B-1-A-1)BmBm. 

As a well known result of matrix theory (see e.g. [14], p. 59) ensures that positive de
finiteness of B, (A-B) implies positive definiteness of (B-1 -A-1), we deduce that 
existence of n-1 is ensured for all work-hardening materials obeying normality. This 
result can be obtained more directly by referring to Theorem 1, which concerns the 
monotonicity of H, and recalling that a monotonic operator is invertible. 

5. The incremental problem 

Let us consider a body occupying the region 11 at time t, in equilibrium under given 
body forces and under surface tractions specified at some portion o1 11 of the boundary. 
The complementary part o2 f!l of the boundary is subject to geometrical constraints. 
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Let now external forces and geometrical constraints be varied during the time interval 
(t, t +dt). We denote as the incremental equilibrium problem the problem of determining 
the stress, strain and displacement fields iJdt, edt, udt for the equilibrium problem under 
the perturbed data. In other words, the stress field is required to satisfy the equilibrium 
conditions 

(5.1) div(/+i = 0 in 11, 

where jdt, Fdt are the perturbed body forces and surface tractions, and vis the exterior 
normal to a 1 f!4. The strain and displacement fields are required to satisfy the compatibility 
equations 

(5.2) 2e = gradu+(gradzi)T in f-1, u = v on 82 11, 

where vdt are the perturbed geometrical constraints on o2 f-l. Furthermore, the con
stitutive equation iJ = He must be satisfied. 

In this Section we consider the conditions under which the uniqueness of the solution 
of the incremental problem is ensured, and also under which variational principles can 
be stated. In the next Section we shall deal with the existence problem. We begin with 
a very standard uniqueness theorem. 

THEoREM 4. If H is monotonic, the incremental problem admits no more than one so
lution. 

P r o o f. Suppose that there are two solutions, (J, e, u and i1*, e*, u*. The virtual 
work equation for the fields CJ-il*, e-e*, u-u* is 

(5.3) J (a-il*)· (e-e*)dx = o. 
"' But, as (/, iJ* are solutions, they obey the constitutive equation. Therefore, iJ-iJ* = 

= He-He* and, by the monotonicity of H, the integrand is positive unless e = e* 
through 11. 

In particular, Theorems 1 , 2 discussed in the preceding Section ensure uniqueness 
for all work-hardening materials obeying normality. 

We shall now discuss the minimum principles. For this purpose, we introduce the 
notation 

(a, b) = J a(x)b(x)dx, (a, b)a1 = J a(x)b(x)dx. 
Ill 8181 

Then we define the functional 

(5.4) W(u*) =(He*, e*)-2 <i, u*)-2 <i, u*)al 

over the linear manifold of the functions u*(x), e*(x) satisfying the compatibility equa
tions (5.2). By introducing the strain field i corresponding to the solution of the in
cremental problem and by using the virtual work equation, we may express the func
tional W in the form 

W(u*) =(He*, e*)-2(Ht, e*)+2(i', v)a1 , 

where Tare the surface tractions on 82 11 corresponding to the solution, and iJ are the 
data on o2 PA. 

The first of the minimum principles states that 
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THEoREM 5. If A, B are positive definite and if normality holds, then the functional W(u*) 
achieves an absolute minimum at the solution u of the incremental problem. 

P r o o f. Let us consider the difference 

(5.5) W(u*)- W(u) =<He*, e*)-2(He, e*> +<He,£). 

The theorem asserts that this difference is positive, unless u* = u. By substitution of 
the constitutive equation (4.lh and by normality we have: 

(5.6) w(u*)- w(u) 

= (Be*, £*)-2(Be, e*>+<Be, e> +<(A-B)e', e)-2((A-B)e', e*> +<(A-B)e*', e*> 

= (B(e*.- e), e*- e> +<(A-B) (e*'- e'), e*'- e'>-2( (A- B)e', e*">. 

If e* ::1= e, the first term is positive by positive definiteness of B. The remaining two are 
non-negative by Lemmas 1 , 2 of Sec. 4. 

To state the complementary minimum principle we introduce the functional 

(5.7) 

defined over the set of the stress fields u*(x) satisfying the equilibrium equations (5.1). 
By introducing the fields u(x), u(x) corresponding to the solution of the incremental 
problem and by using the virtual work equation, we have that 

V(u*) =(a*, n- 1u*)-2(u*, H-1l1)+2(j, u)+2(F, u)a
1

• 

The complementary minimum principle can now be stated as follows: 
THEOREM 6. If A, B are positive definite and if normality holds, the functional V(C1*) 

has an absolute minimum at the solution of the incremental problem. 
Proof. We observe that the assumptions made above are sufficient to ensure the 

existence of H- 1• Next, we again consider the difference 

V(ir*)-V(u) =(a*, H-1u*)-2(l1*, H- 1fl)+(a, H- 1C1) = 

=<He*, e*>-2<He*, £>+<He~ e), 

where we define e* = H-1U*. This difference is identical with the right-hand side of 
the Eq. (5.5), except fore, e* which are interchanged. But in proving its positiveness the 
fact that e is the solution was not used. Therefore, by repeating the proof of the preced
ing theorem we can state that V(o-*)- V(C1) is positive for any equilibrated stress field 
different from ir(x). 

6. The existence theorem 

We have proved in the preceding Section that the solution of the incremental equi
librium problem minimizes the functional 

W(u) =(He, £)-2(j, u)-2(i, u>a~ 

over the linear manifold of the functions obeying the compatibility conditions (5.2). 
Here, we shall prove that such a solution exists. It is well known that to give a satisfactory 
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response to the existence problem it is necessary that the domain of definition of W be 
suitably enlarged, to become a complete function space. Hence, we introduce the HILBERT 
space .l'f obtained by the completion of the set of the compatible functions with respect 
to the scalar product 

(a, b)= J (ab+gradagradb)dx, 
91 

and we take as the norm of .l'f the usual norm 

l!all = V (a, a). 

We shall prove that there exists a function minimizing W throughout :!'f. It may 
happen that this function does not belong to the original domain of W; in this case, 
it will be referred to as a "generalized solution". 

We assume that 

(6.1) 

I being the identity operator. By Theorem 2, the second and third inequalities correspond 
to normality; the first one postulates the boundedness of the elastic operator A and the 
last one requires the coerciveness of B and implies that the material is work-hardening. 
Furthermore, we assume that 881 is sufficiently regular to admit the a priori limitations(l): 

(6.2) 

The following inequality is also easily verified(4) 

(6.3) (u, u>+<e, e> ~ llilll2
• 

Under the assumptions made above, the functional W results to be continuous, convex 
and bounded from below. Boundedness is a consequence of the coerciveness of B and 
of KoRN's inequality (6.2)1 , and may easily be deduced with the aid of the Ineq. (6.3) 
and of the CAUCHY-SCHWARZ inequality, as follows: 

(6.4) w(u) =(He, "e)-2(j, u)-2(i, u> 
~ fJ2(e, e)-2Y <i.i> (u, u)-2Y(P, F)a1(u, u)a

1 

~ ,B2y2lluW-2[V<i.i>+~ V<P, i'>al] ·Hull 

~ ,8~:2 [y' <i.i> +~ v <i, i>aJ2 = ,8-;:2 iP2. 
Boundedness is then ensured whenever the number tP defined above and depending 

only on the data, is finite. To prove continuity, we take two elements u, u* of .l'f and 
consider the difference 

(6.5) W(u*)- W(u) =(Hi*, e*>-<Hi, 'e)-2(j, u-u*)-2(F, u-u*)a1 • 

e> The first one is KoRN's inequality (see e.g. F!CHERA [15], Sec. 12). A proof of it for the various 
types of boundary conditions can be found in M!KHLIN [16], Secs. 40 to 42. For the second inequality, 
see e.g. [15], Sec. 2. 

(
4

) By decomposing the displacement gradient into the sum of its symmetric and skew-symmetric 
parts e' w we have: 

lluW-<u, u> = <srad u, gradu> = <i+w, e+w> =<e. e>+<w, w> ~<e. i>. 
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By putting e* = .e +~ and by using the constitutive equation (4.1h and Lemmas I, 4, 
we have 

(He*, e*)-(Hi, e)= (B(i+~), e+~>-<Be, e)+((A-B) (e+~)', (e+~Y> 

-((A-B)e', e') ~ 2(Be, ~)+(B~, ~)+2((A-B)e', ~')+((A-B)~',~'), 

and, by the CAUCHY-SCHW ARZ inequality combined with Lemma I : 

(He*, e*)-(He, e) 

~ 2y(Be, e) (BiJ, ~)+(B~, ~)+~y((A-B)e, e) ((A-B)~, ~)+((A-B)~,~) 

~ a.2(~, ~>+4a.2 V(i, e> <~, ~> ~ a.2llu-u*ll2+4a.2llull·llu-u*ll. 
By majorizing the remaining part of the right-hand side of the Eq. (6.5) just as in the 
Ineq. (6.4) we may conclude that 

W(u*)- W(u) ~ [a.2llu-u*ll +4a.2llull +{I)]· llu-u*ll. 

This implies semicontinuity of W at u, provided that llull and {I) are finite. As a similar 
inequality holds when u, u* are interchanged, the continuity of W is ensured and we 
have that 

(6.6) lim 1 W(u*)- W(u)l = o. 
llu-;,•u .... o 

Convexity means that the number 

J(U, U*) = W(U)-2w( U~U*) +W(U*) 

is positive whenever u #: u*. In our case. by using the Eq. (4.1h and Lemmas I, 4, we 
have: 

(6.7) J(u, u*) =(Be,£>- ~ (B(e+e*), e+e*>+<Be*, e*>+<<A-B)e', e'> 

- ~ ((A-B) (e+e*)', (e+e*Y>+<<A-B)e*', e*'> 

~ ~ (B(e-e*}, e-e*>+ ~·<<A-B) (i'-e*'), e'-e*'> 

~ ~ P2r2 llu-u*ll2, 

and this is a sufficient condition for convexity. 
Once these properties of W have been stated, the proof of the existence theorem is 

very close to the one concerning the case of linearelasticity. The boundedness of W implies 
the existence of an exact lower bound, which will be denoted by d, and implies the 
possibility of constructing a minimizing sequence for W, i.e., a sequence {u,.} of elements 
of ff such that 

(6.8) d ~ W(U,.) < d + Ifn. 

Thus, taken a positive integer N, for any integers m, n > N we have that 

J(U., U.) = W(U.)-2W( U.~ri,) + W(U..).;;; d+! -2d+d+ ! < ~· 
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and, by lneq. (6.7), 

1 (32 211 • • 112 2 T Y Um-Un < N for any m, n > N. 

Then, {u,} is a CAUCHY sequence and, as :If is complete, {u,} converges in the norm 
11· 11 to an element u0 of ff. Furthermore, by substituting u,, u0 into the Eq. (6.6) we 
have that the numerical sequence {W(u,)} converges to W(u0 ), so that, by the Ineqs. 
(6.8), we have W(u0 ) = d. 

Therefore, the minimum of W(u) in ff exists and is attained at u0u0 • Then, u0 is 
the generalized solution of the incremental equilibrium problem. 

We observe that the Eq. (6.6) holds only if lluoll is finite. The problem of establishing 
some a priori restrictions on the data which ensure the finiteness of llzioll will not be 
dealt with here. 

7. Perfect plasticity 

The perfectly plastic material has been defined in Sec. 4 as an elastic-plastic material 
characterized by B = 0. This property can also be regarded, from the viewpoint of the 
classical theories, as a particular "hardening rule" imposing that the elastic range re
mains fixed in the stress space. It is also worth noting that, as shown by the Eq. (3.1), 
for B = 0 the strain e" is coincident with the "plastic strain" eP, so that in this 
particular case the sum decomposition (2.1) of e is identical with the classical one. 

In perfect plasticity, according to Definition 3, the incremental energy corresponding 
to a purely plastic response is zero. Hence, the operator H cannot be positive definite, 
and the existence and uniqueness theorems proved in the preceding Sections are not 
available. However, it will be shown that the uniqueness theorem and the minimum 
principles given above can be retained in a weakened form with slight modifications, 
whereas the same will not to possible for the existence theorem. Another important 
property of the perfectly plastic materials is that, for them, normality is a consequence 
of the positive semi-definiteness of H. To see this, we first write the constitutive equation 
of the perfectly plastic material, obtained by putting B = 0 in the Eq. (2.9): 

(7.1) a-= Hi= Ae', 

and we recall that, by Lemma 1, normality is now equivalent to: 

(7.2) A > O; Ae'e" = 0 for any i', i". 

Then, we state the following 
THEOREM 7. In perfect plasticity, normality implies and is implied by positive semi

definiteness of H. 
P r o o f. We have by Theorem 2 that normality is equivalent to A ~ H ~ B and, 

as B = 0, this proves the first assertion. Conversely, by assuming H ~ 0 we have from 
the Eq. (7.1) that 

0 ~ Hei = Ae' i' + Ae' i" for any e', e". 

But this implies the Eqs. (7.2) and, consequently, normality. 
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This result allows us to state the uniqueness theorem for the perfectly plastic material: 
THEoREM 8. For a perfectly plastic material the stress-rate field resolving the incremental 

.equilibrium problem is unique if H is weakly monotonic. 
P r o o f. Let e, e* be two solutions of the incremental problem. By the virtual work 

equation we have 

<He-He*, e-e*> = o, 
and, by the weak monotonicity of H, 

(He-Hi*) (s-i*) = o 

throughout !11. Then, the Eq. (7.1) yields: 

A(i'-e*') (i'-i*')+A(i'-i*') (i"-i*") = o. 

By Theorem 1, weak monotonicity is equivalent to positive semidefiniteness and, by 
Theorem 7, the latter is equivalent to normality. Hence, the Eqs. (7.2) and Lemma 2 can 
be used to show that both terms of the above equation are positive unless i' = e*', and 
we have proved the uniqueness of the field e' or, equivalently, of the field (t resolving the 
incremental equilibrium problem. 

For the first minimum principle proved in Sec. 5 we have a similar modification: the 
functional W(u*) has again an absolute minimum at the solution u, but the value of 
W(u) is unaltered by adding to e any distribution of plastic strains. In fact, by putting 
B = 0 in the Eq. (5.6) we have 

W(u*)- W(u) =<ACe*'-£'),£*' -i')-2(Ai', e*"), 

and this is a positive number unless e' = e*', as it results from Lemmas 1, 2. 
As to the reciprocal variational principle, we have that the functional V(O'*) cannot 

be defined as in the Eq. (5.7) because the condition required by Theorem 3 for inverting 
the operator H is not satisfied for B = 0. This difficulty can be removed by defining 
V( 0'*) as follows: 

V( 0'*) = ( (/*, A -t{t*)-2( a*P, v)a
1

• 

Besides the equilibrium equations (5.1), a*(x) must now obey the restrictions follow
ing the fact that the yield surface is fixed in the stress space. Hence, whenever the point 
CJ* belongs to the yield surface, the vector iT* must be such that 

(7.3) 

Therefore, under given increments of the data, it may happen that the set of the ad
missible stress rate fields if* be empty. We assume here that it is non-empty, and that 
a solution (u, e, a) of the incremental problem exists. The virtual work equation gives 
then 

V((!*) = (a*, A-1a*> -2(a*, e) +2(j, u> +2(F, u)a1 

and, consequently, 

V(iJ*)-V((J) = ((/*,A- 1a*)-2(a*, e)-(it,A-1a)+2(if, e) 

= <D--if*, A- 1 (&-if*))-2(a*~ e")+2(if, £"), 
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having replaced e by A- 10'+e", by virtue of the constitutive equation (7.1). Recalling 
that, by normality e" is parallel to na, we have from the Eqs. (7.2), and (7.3) that V(it*) 
is greater than V(it) whenever 0'* :1= <1. This is the complementary variational principle. 
As to the existence theorem proved in Sec. 6, we observe that the coerciveness of H 
played an essential role in proving boundedness and convexity of the functional W(u). 
As, obviously, a semi-definite operator cannot be coercive, we conclude that the 
technique used in Sec. 6 to prove existence cannot be applied to the case of perfect 
plasticity. 
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