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Unsteady Iaminar combined convection near the lower stagnation 
point of an isothermal circular cylinder 

I. POP (CLUJ) 

THE EFECTS of buoyancy forces on the unsteady incompressible flow near the lower stagnation 
point of an infinite circular cylinder are described. The external stream is assumed to be set 
in an impulsive motion from rest towards the cylinder and the temperature of the cylinder is 
suddenly increased from that of the surrounding fluid. Series at small time are used for velocity, 
temperature, skin friction coefficient and Nusselt number. By applying Shanks's method the 
values of the skin friction and heat transfer coefficients at smaiJ time are used to estimate their 
values for the steady problem. 

Om6wiono wplyw sil wyporu na nieustalony przeplyw nie5cisliwy w poblizu niZszego punktu 
stagnacji nieskonczonego walca koJowego. Zaloi:ono, ze strumien zewncctrzny zostaje gwaltow­
nie wprawiony w ruch w kierunku walca, a · temperatura walca wzrasta raptownie w stosunku 
do temperatury otaczaj~cego osrodka. Do wyra:Zenia prccdko8ci, temperatury, tarcia powierzchnio­
wego oraz liczby Nusselta zastosowano przybli:lenie szeregami dla malych warto8ci czasu. 
Stosuj~c metodcc Shanksa wykorzystano otrzymane warto5ci tarcia powierzchniowego i wsp61-
czynnik6w przewodzenia ciepla do oceny ich odpowiednich warto8ci w przypadku zagadnienia 
ustalonego. · 

06cy~eHO BJIWIHHe CHJI llOA'beMa Ha HeyCT8HOBHBWeecJI HeOKHMaeMoe Te'leHHe B6JIH3H 
HH3WeH KpHTH'IeCKOH TO'IKH 6eCKOHe'IHoro Kpyroaoro IUIJ]HH.lq)a. IJpeAIIOJIO>f<eHO, 'ITO BHem­
HHH noTOK aueaanuo BBOAHTCH B ABH>f<eHHe B uanpaaneHHH ~pa, a TeMnepaorypa I.UI­
nwmpa B03pBCTaeT BHe3allHO no OTHOWCHHIO K TeMnepaT}'Pe OKpY>f<aJOIQeH cpeA)>I. JVm 
Bbipa>~<eHHH CKOpoCTH, TCMnepaTYphi, noaepXHOCTHOro TpeHHH H 'IHCJia Hyccem.Ta npHMe­
ueuo npH6JIH>f<eHHe pJmaM.H AJIH MaJibiX 3R&'IeHHii apeMeHH. IlpHMeiUIH MeTOA IllaRKca 
HCllOJib30BaRbl llOJiy'leiUible 3HB'IeHHH llOBepXHOCTHOro TpeHIUI H K03CIMJ>HinfeHTOB TenJIO­
npOBO){HOCTH AJIH OQeHKH HX COOTBeTCTBYJOIQHX 3HB'IeHHH B CJIY'IBe ycraHOBHBWeHCH 3BAB'IH. 

Notations 

Cf coefficient of skin friction, Tw/8exU~, 
D cylinder diameter, 

f, h functions, Eqs. (3.3), 
fi, h; functions, Eqs. (3.6), 

F D buoyancy parameter, U oo/ y' {Jg( T w- T 00) D , 
g acceleration due to gravity, 

·GD Grashof number, {Jg(Tw- Too)D3/v2
, 

k thermal conductivity, 
ND local Nusselt number, qwD/(Tw- Too)k, 

q heat transfer, -k( oT) , 
ay ,=o 

RD Reynolds number, U00 D/v, 
t time, 
T temperature, 

u, v velocity components. 
x, y coordinates, 
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Superscripts 

Subscripts 

1. lntrod~ction 

ex thermal diffusivity, 
{J coefficient of thermal expansion, 

1J similarity variable, y/2yt, 
p. dynamic \'iscosity, 
v kinematic viscosity, 
e density, 
a Prandtl number, vfcx, 

T skin friction, p. ( :" ) , 
cJY y=o 

1JI stream function, 
tP angular position, 2x/D. 

+ dimensionless variables, 
I derivatives with respeCt to 1J. 

w wall conditions, 
i,j 0,1,2, ... 
oo ambient condition. 

I. PoP 

ALTHOUGH much work, both theoretical and experimental, has been published on the 
theory of unsteady boundary layer, there are only a few works which contribute to the 
problem of the effects of buoyancy forces on the unsteady flow. A§KOVIC (1967, 1972) 
and PoP (1971) have dealt with the analytical study of the unsteady three-dimensional 
combined flow. Quite recently, SOUNDALGEKAR. (1973) has directed his study at the un­
steady combined convection over a vertical infinite flat plate. 

Problems inyolving the buoyancy effects are important in technology, meteorology, 
oceanography, etc. A few more special examples are associated with the mechanics of 
cloud formation and cloud top oscillation, buoyancy driven ocean circulations, and the 
thermal circulation in lakes resulting perhaps from water discharges. 

The aim of this paper is to present .an information on the effects of buoyancy forces 
on the unsteady incompressible flow in the region of the lower stagnation point of an in­
finite cylinder which is in1mersed in the external stream. Therefore, we consider the situ­
ation when forced and free convection act simultaneously in establishing the flow and 
~emperature fields adjacent to the stagnation point of a heated or cooled cylinder. The ex­
ternal stream is assumed to be set in an impulsive motion from rest towards the cylinder 
at time .t = 0 and kept steady thereafter. The temperature of the cylinder is suddenly 
increased from that of the surrounding fluid at time t = 0. Initially the fluid particles in 
contact with the cylinder have the same temperature as the cylinder, thus producing a dis­
continuity in the temperature field. The diffusion of heat from the cylinder which domi­
nates over convection for small time creates variations in the density field and this pro­
duces bouyancy forces and hence there arises an additionally fluid motion around the 
cylinder. 

As in OosTHUIZEN (1970) we will designate as assisting flows those flows for which 
the buoyancy forces have a positive component in the directiop of free stream velocity. 
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UNSTEADY LAMINAR. COMBINED CONVECI10N 105 

Those flows for which the buoyancy forces have a component opposite to the free stream 
velocity will be designated asopposing flows. For convenience the calculations have been 
restricted to Prandtl number (J u~ty since they are very tedious and are liable to cause errors. 
But the general ideas hold for other values. The analysis is carried out for the case of uni­
form surface temperature Tw. Thus the governing boundary-layer equations are reduced 
to a set of ordinary differential equations by an expansion method into power series of small 
time. The first three approximations to the velocity and temperature distributions are ana­
lytically evaluated using a method analogous with that given by PoP (1969). Numerical 
calculations ar~ performed for various values of the parameter FD which characterizes the 
present problem and graphs for the velocity, temperature, skin friction and heat transfer 
coefficients are presented. In considering these results it should be mentioned that F 0 --. CXJ 

corresponds to purely forced convection. 
When the problems of the boundary layer are seen to have steady solutions with pos­

itive skin friction, separation would not occur and unsteady flows would approach the 
steady flow as a limit of time t --. CXJ. An unsteady flow at the forward stagnation point 
is cited as an example of such problems. So, the values of the skin friction and heat trans­
fer coefficients for small times we have e~trapolated to infinite time. It should be pointed 
out that a theoretical study of the effect of a magnetic field on the transient phenomena 
to the steady flow near the forward stagnation point of an infinite plane wall was performed 
by KATAGIRI (1969) by a direct numerical integration of the unsteady boundary-layer 
equations. 

2. Basic equation 

The curvilinear orthogonal coordinate system and notations adopted for this analysis 
are shown in Fig. 1. The arc length x is measured along the surface of the cylinder and 

FIG. 1. Coordinate system. 

has its initial value of zero at the lower stagnation point, and y is the normal distance from 
the surface. 

If the effects of the component of the buoyancy forces normal to the cylinder are 
neglected and if the fluid properties are assumed constant and viscous dissipation is 
disregarded, the governing equations for unsteady and incompressible flow are 

ou iJv 
(2.1) -ax+ay- = 0, 
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106 I. PoP 

(2.1) 
tcont.J 

ou ou ou oU oU o2u . 
Tt+u ox +va_y = Tt+U ox+, oy2 ±fJg(T-Too)sm(/), 

oT oT oT , o2 T 
-+u-+v-=---
ot ox oy (] oy2 · 

The plus-minus signs in the buoyancy term correspond to assisting and opposing flows, 
respectively. 

The specification of the initial and the boundary conditions is necessary to complete 
the statement of the problem. It is as follows. For t < 0, the flow is assumed to re­
main at rest. At t = 0, the flow starts to move impulsively with the velocity U(t, x). In addi­
tion, the temperature of the cylinder is suddenly increased from that of the surrounding 
:fluid at timet = 0. Formally, these conditions may be stated as 

t < 0: u(t,x,y) =0, T(t, x,y) = T00l 
t = 0: u = U(t,x), T = T00 

everywhere; 

(2.2) 
t > 0: U =V= 0, T = Tw = const at y =0, 

u--. U, T--.Too as y-+CXJ. 

Having thus completed the statement of the problem, attention may next be directed 
toward finding a solution. The following dimensionless variables are introduced 

u+ = U/U u+ = u/U00 , 
(2.3) OOt 

v+ = vy RD/Uoo, r+ = (T-Too)/(Tw-Too), 

x+ = xfD, y+ = YV~/D. 

In terms of these variables Eqs. (2.1) become 

~+~=0 
ox oy ' 

(2.4) ~ ~ ~ _ oU U oU o2u Tsint/J 
ot + u ax + v oy - ot + ox + oy2 ± FA ' 

oT oT oT 1 o2T 
-+u-+v-=---ot ox oy (] oy2 , 

where, for the sake of simplicity, the cross in Eqs. (2.4) has been omitted and 

(2.5) 

is the buoyancy parameter. 
The transformations (2.3) give the boundary conditions as 

t < 0: u(t, x, y) = 0, T(t,x,y) =0\ 
t = 0: u = U(t, x), T=O 

everywhere; 

(2.6) 
t > 0: U =V= 0, T=1 at y = 0, 

u __. u, T-+0 as y __. (X). 
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3. Method of solution 

We shall restrict our study to the case when the free stream is independent of time. 
Near the stagnation point, where x is small, the following approximations can be used 

(3.1) sin~~ ~ = 2x and U ~ 4x. 

If we now define the stream function P by 

aw 
(3.2) u = - and ay 

aw 
V=--­

OX' 
and we write 

(3.3) r P(t,x,y) = 8xJ!if(t,1J), T(t,y) = h(t,1')), 

the Eqs. (2.4) may be written 

o3f o2
f o

2
f _ { ( of)

2 
o2f 2 \ 

-01') 3 +21') 01') 2 -41 0101') - -161 1- ar} +f 01'J 2-±h/8FDf' 

1 o2h oh oh oh 
-;; on2 +2na:YJ-4ta~ = -161a:YJ, 

(3.4) 

with the boundary conditions 

of 
f = ar} = 0, h = 1 at 1'J = 0, 

(3.5) 

as 1'J--+ oo. 

We look for a solution of the Eqs. (3.4) by an expansion of /(1, 1')) and h(t, 1')) in 
power oft 

00 00 

(3.6) f(t' 1')) = 2; (4t)ifi(1'J), h(t, 1')) = L; (4t)ih;(1')). 
i=O 1=0 

Expressions (3.6) give the following differential equations and boundary conditions: 

!~" +2nf~' = o, _!__h;; +2nh~ = o, 
(J 

fo = J~ = 0, ho = 1 at 1') = 0; f~ --+ 1 , h0 --+ 0 as 1') --+ oo; 

f{" +2nft -4/{ = -4(1-/~2 +/of~' ±ho/8Ffi), 

(3.7) 
_!__h~ +2nh~ -4hl = -4foh~, 
(J 

/ 1 = f{ = h1 = 0 at 1') = 0, [;--+ 0, h1 --+ 0 as 1')--+ oo; 

i-1 

Ji"' +2nfi" -4if/ = -4 J; Ui-j-1/j' -fLi-t!})+ 2~2 h1-1, 
i=O D 

i-1 

_!_h~'+2nh~-4ih; = -4 >'ii-j-thi, 
(J j7::0 

fi = Ji' = h; = 0 at 1'J = 0, Ji' --+ 0, h1 --+ 0 as 1'J--+ oo, 

fori~ 2. 
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108 I. PoP' 

The system of linear differential equations (3. 7) may be solved successively. in a manner 
of analytical procedures proposed by BLASIUS (1908) or by GoLDSTEIN and RosENHEAD 

(1936). However, the solutions ~f higher order equations may be supposed to have 
complicated forms and it is much troublesome and laborious work to obtain solutions 
in an analytical form. In this paper, we attempt to obtain analytical solutions up to 
the third order of approximation. In order to simplify the mathematical description, 
throughout the remainder of the analysis (J is taken as unity although the same ideas 
hold for different values. Thus the solution of (3.7) up to the third order of approximation, 
without going into details, is 

(3.8) 

!M'YJ) = erf'YJ, fo('YJ) = 'YJerf1]+ 
1
_ (e-~2 -1), h0 (1J) = 1-erf1J, 

Jl n 

[;(f}) = -( 1+ 3: )(1+2f}2)+( ~ + 3:) [ (1+2f}2)erff}+ ::it f}e-•'] 

+ ((1]2 _ _!_)erf21] + 3
_ 'YJe-~2erf1J + ~e-2~2 -~ e-'~1 

2 yn n 3n 

1 1 ( 2 f 1 -f]l 2) . + ± 4 F~ 1J er 'YJ + yn fJe - 'YJ ' 

f, (fJ) = -( 1 + 3: }('I+~ '13) + ( ~ + 3:) [('I+ i '13 )err 'I+ 3 :n (1 +fJz)e-•'] 

; -

+ (_!_1] 3
- _!_11) erf2 1J + ~[(21]2 

- !!._) e- '~2 - 2]erf 1J + 
4 

Jt :_ erf (y21J) 
3 2 3yn 2 3yn 

1 - 21}2 1 [ 1 3 rf 1 ( 2 - 1 ) - f]2 1 3 
+};t1]e +'Y]± FA 1211 e YJ+ 12}/n 1] 2 e -121] 

+24~:it ]- 3~:it (
1

+ 3: )· 

h, ('I) = ( '1
2 

+ ~ )erf
2 

'1 + 
1
:n '1•-•' erf '1- ( ~ - 3:) [ (1 + 2'12)erf fJ + J,. '1•-•' J 

+ _i_e-'11- _i_ (1 + 21]2) 
3n 3n ' 

J;(1J) = (_!__ 112 _ _!_ 114)erf31J + [- 4__ (11 +_!_113)e-'12 + _!_(_!_ + 2_) 114 
4 3 yn 3 3 2 3n 
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2 (1 2 2) '12 16 2 4 ( 8 ') 4 1 ( 1 3 11) 2} -n- +3TJ e- - 3n 'fJ + 3y';t 1-3n tJ-rn± ynFA -g-TJ -48 e-'1 

21Vf 16J12 , -
xerf'f}+ 

20
n (3+12'f}2 +4TJ4)erf{TJYJ)-

15
n e-'~2 erf(TJY2) 

+ - .-
1
- (971 -n + 378TJ3

) e- 3 '~2 + _!:._[-~'fJ + (1-~) TJ 2
] e- 2 '~2 

~~ ~ 1t 3~ ~ 

+ Jtt [(! + 9: }~'+(!- ;~}~+ s:tt ( l- ~ }]e-"'+ 9~;" ~ 
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110 I. POP 

where erf 'YJ is the error function defined by 

(3.9) 

From (3.8) we have 

t~'<O> = )n = 1·128379, hO<o> = - :n = -.J.-128379, 

1 ( =---=- +- ±------;=- -2 = 1·607278±0·141047-2' ! , 0) 2 (1 4 ) 1 1 1 
"V n 3n 4Jin FD FD 

h;(O) =-;,. (1- 3~) = -0·170581, 

f "(O) = _1_(_!.!. 89-108 ti3 256 ) 1 ( 19 62 ) 1 2 yn . 6 + 15n 135n2 ± y'n 48 - 45n FJ 

(3.10) 

1 
= -0·248091 ± ( -0·024147) FJ, 

h' (O) = _1_(23 451-252v3 _ 256 ) _1_(~--28 )-1 2 ~ 18 + 15n 15n2 ± yi 16 45n FJ 

1 = -0·080817±(-0·006771) p2. 
- D 

4. Discussions 

To clarify the influence of the buoyancy forces on the flow, the velocity and temperature 
profiles v~rsus y are presented in Figs. 2-5 for F» = 0.3 and oo, -respectively. It will be 
noted from these graphs that the effects of buoyancy forces are comparatively small. They 
decrease the velocity profiles in assisting flow and increase·them in opposing flow, while 
the temperature profiles are increasing in assisting flow and decreasing in opposing flow. 

0 

-Assisting 
---.- Opposing 

y 
FIG. 2. Velocity ptbfiles for 4t = 0.25. 

ta 

0.8 

D.6 

0.4 

0.2 

0 

....___ Assisting 

----Opposing 

y 
FIG. 3. Velocity profiles for 4t = 0.64. 
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-- Assisting -Assisting 

0.8 ---- Opposing as ---- Opposing 

Q6 

0.2 Q2 

a 1 2 fj 0 2 y 

FIG. 4. Temperature profiles for 4t = 0.25. FIG. 5. Temperature profiles for 4t = 0.64. 

Once the distributions of u and Tare known, any other required property of the flow 
can be determined. Thus the coefficients of skin friction and heat transfer at the wall are 
given by 

C1y'RD = ,.~- (~/) = .~-- {f~'(0)+(4t)j;'(0)+(4t)2/~'(0)+ ... } 
2v4t u1J 1j=0 2v4t 

= o-564189(4t)- 1
'
2 +(0·803639±0·070523 ;A (4t)1

'
2 

(4.1) -(0·124045±0·012073 :~)(41)3 '2 + ... , 

NDIVRD =- .. / (~h-) =- ,
1 {h~(0)+(4t)h~(0)+(4t)2h~(O)+ ... } 

J' 4t 1J 1j=0 y4t 

= 1·128379(41)-'2 '+0·170581(41)112 +(0·080817 ±0·006771 ~~ )<41)3
'
2 + ...• 

The coefficients of skin friction and heat transfer are plotted versus time in Figs. 6~and 7 
for different values of FD, the buoyancy parameter. They are singular at t = 0 because 
the flow was started impulsively and the temperature of the cylinder is suddenly increased. 
It is observed that the solutions for the skin friction and heat transfer are valid only for 
small values oft. Further, Figs. 6 and 7 show that the buoyancy forces increase the skin 
friction and heat transfer in assisting flow and decrease them in opposing flow. Neverthe­
less, it is worth noting that the buoyancy forces have a completely negligible.effect on the 
flow when FD is greater than 5 (that is, GD! Rfi less than 0.04). 

Although series (4.1) hold only for a small time, they may be used to estimate values 
for the steady problem (t ~ CXJ ). The procedure for extrapolating to i,nfinite time was 
devised by SHANKS (1955) and has successfully been appli~d to~ several . problems in fluid 
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1 

0 

Assisti'ng 

Op~ing 

4t 

I. POP 

8 
- A.ssisting 

--- Opposing 

0 

FIG. 6. Results for the skin friction coefficient. FIG. 7. Results for the heat transfer coefficient. 

dynamics by VAN DYKE (1964) and recently for free convection by ELLIOTI (1970). In order 
to use this technique, the series (4.1) are first expressed in the form 

( 
4t )

1
'
2 

_ 1 , I (!{'(0) 1) 
1+ 4t C,yRD = 1"/o (0) 1+ /~'(O) -2 (4t) 

( /~'(0) /;'(0) - 3) 2 ·(3/;'(0) /~'(0) 5) 3 \ 

(4.2) + J~'(O) - 2/~'(o) + ~ <4t) + sfo'(o) - 2f~'<or -16 <41
> + ... f, 

( 
4t )

1

'

2 

- I I ( h~(O) 1) 
1 +4t ND!Y RD = -h0 (0) 1 + h(,(O) -2 (4t) 

h;(O) 5 ) 3 \ 
2h(,(O) - 16 (4 t) + ... f. 

Applying Shanks's non-linear transformation to the power series on the right-hand 
side of expressions (4.2) yields single rational fractions. These rational fractions remain 
bounded at infinite time and so give an estimate ofthe steady state values. (As is known, 
Shanks's transformation requires not necessarily the convergence ·of a series). The values 
for ~-skin friction and heat transfer as t -+ oo are given in Table 1 for various values 

NDYRD 

FD 
, .. 

assisting opposing assisting opposing 

0.3 2.604116 0.248243 0.807913 0.683792 
0.5 1.848012 1.041985 0.778989 0.726670 
l.O 1.546899 1.284005 0.763906 0.749802 
5.0 1.44749~ 1.438582 0.756234 0.755669 
(X) 1.443196 1.443196 0,756014 0.756014 
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of FD. By an examination on this Table, it is found that for FD ~eo (purely forced con­
vection), the results fot: the skin friction and heat transfer are generally in agreement with 
those of SmULKIN (1962), and HAYDAY and BoWLus (1967) for the steady flow near a two­
dimensional !;tagnation point. Presumably better agreement exists for higher terms in ( 4.2). 
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