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Unsteady laminar combined convection near the lower stagnation
point of an isothermal circular cylinder

I. POP (CLU))

THE erFecTs of buoyancy forces on the unsteady incompressible flow near the lower stagnation
point of an infinite circular cylinder are described. The external stream is assumed to be set
in an impulsive motion from rest towards the cylinder and the temperature of the cylinder is
suddenly increased from that of the surrounding fluid. Series at small time are used for velocity,
temperature, skin friction coefficient and Nusselt number. By applying Shanks's method the
values of the skin friction and heat transfer coefficients at small time are used to estimate their
values for the steady problem.

Omowiono wplyw sit wyporu na nieustalony przeplyw niesciSliwy w poblizu niZzszego punktu
stagnacji nieskoriczonego walca kolowego. ZatoZzono, ze strumien zewngtrzny zostaje gwattow-
nie wprawiony w ruch w kierunku walca, a temperatura walca wzrasta raptownie w stosunku
do temperatury otaczajacego o$rodka. Do wyrazenia predkoéci, temperatury, tarcia powierzchnio-
wego oraz liczby Nusselta zastosowano przyblizenie szeregami dla malych wartoéci czasu.
Stosujac metode Shanksa wykorzystano otrzymane wartosci tarcia powierzchniowego i wspéi-
czynnikow przewodzenia ciepla do oceny ich odpowiednich wartosci w przypadku zagadnienia
ustalonego.

ObcynneHo BIMAHHE CHJI NOABEMA HAa HEYCTAHOBHBLUCECA HECHKHMMAEMOE TCUCHHE BOIH3H
Hu3lIel KPATHUECKOH TOUKH GeCKOHeYHOro Kpyrosoro WamMHApa. [IpenonoeHo, 9To BHeI-
HMi TOTOK BHE3alHO BEOAWTCA B JIBIDKCHHME B HANPABJICHHM LAMMHADA, & TEMIEpaTypa LH-
JIMHApa BO3pAacTaeT BHESAIHO IO OTHOILIEHMIO K TEMIEpaType OKpyatomiedl cpemwl. Jins
BBIPOKEHHA CKOPOCTH, TEMIEPATYpPHI, NMOBEPXHOCTHOTO TPeHHA M uncna Hyccemsra mpume-
HeHO TpRODKEHHEe PAJAMH V1A MATLIX 3HadYeHnd BpemenM. [Ipumenaa meron Illamxca
HCTIOJB30BAHE] MOJyYeHHbIE 3HAUCHHA TOBEPXHOCTHOTO TPEHHA H K0addhHIMEHTOB Temno-
TIPOBO/THOCTH VIR OLICHKH MX COOTBETCTBYIOIIMX 3HAYCHHIT B CJIyYRe YCTAHOBHBINEHCA 3a/aun.

Notations

Cy coefficient of skin friction, 7.,/80xU2,
D cylinder diameter,

f,h functions, Egs. (3.3),

fi, by functions, Egs. (3.6),

Fp buoyancy parameter, Uso/V/Be(Ty—Too)D,
g acceleration due to gravity,

‘Gp Grashof number, fg(T,, — Tw) D3/¥2,
k thermal conductivity,

Np local Nusselt number, g,, D/(Ty— Teo)k,

aT
g heat transfer, -—k(——)
dy

r-=0'
Rp Reynolds number, U D/,
t time,
T temperature,

u,v velocity components,
x,y coordinates,
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thermal diffusivity,

coefficient of thermal expansion,
similarity variable, y/2)/7,
dynamic viscosity,

kinematic viscosity,

density,

Prandtl number, v/,

Qm = T 3 ™R

oy
stream function,
angular position, 2x/D.

e ou
T skin friction, ,u(—-—) s
y=0

S e

Superscripts
+ dimensionless variables,
| derivatives with respect to 7.
Subscripts
w wall conditions,
i,j 0,1,2,...
oo ambient condition.

1. Introduction

ALTHOUGH much work, both theoretical and experimental, has been published on the
theory of unsteady boundary layer, there are only a few works which contribute to the
problem of the effects of buoyancy forces on the unsteady flow. A§kovi¢ (1967, 1972)
and Por (1971) have dealt with the analytical study of the unsteady three-dimensional
combined flow. Quite recently, SOUNDALGEKAR (1973) has directed his study at the un-
steady combined convection over a vertical infinite flat plate.

Problems involving the buoyancy effects are important in technology, meteorology,
oceanography, etc. A few more special examples are associated with the mechanics of
cloud formation and cloud top oscillation, buoyancy driven ocean circulations, and the
thermal circulation in lakes resulting perhaps from water discharges.

The aim of this paper is to present an information on the effects of buoyancy forces
on the unsteady incompressible flow in the region of the lower stagnation point of an in-
finite cylinder which is immersed in the external stream. Therefore, we consider the situ-
ation when forced and free convection act simultaneously in establishing the flow and -
temperature fields adjacent to the stagnation point of a heated or cooled cylinder. The ex-
ternal stream is assumed to be set in an impulsive motion from rest towards the cylinder
at time .t = 0 and kept steady thereafter. The temperature of the cylinder is suddenly
increased from that of the surrounding fluid at time ¢ = 0. Initially the fluid particles in
contact with the cylinder have the same temperature as the cylinder, thus producing a dis-
continuity in the temperature field, The diffusion of heat from the cylinder which domi-
nates over convection for small time creates variations in the density field and this pro-
duces bouyancy forces and hence there arises an additionally fluid motion around the
cylinder.

As in OOSTHUIZEN (1970) we will designate as assisting flows those flows for which
the buoyancy forces have a positive component in the direction of free stream velocity.
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Those flows for which the buoyancy forces have a component opposite to the free stream
velocity will be designated asopposing flows. For convenience the calculations have been
restricted to Prandtl number o unity since they are very tedious and are liable to cause errors.
But the general ideas hold for other values. The analysis is carried out for the case of uni-
form surface temperature T,,. Thus the governing boundary-layer equations are reduced
to a set of ordinary differential equations by an expansion method into power series of small
time. The first three approximations to the velocity and temperature distributions are ana-
Iytically evaluated using a method analogous with that given by PoP (1969). Numerical
calculations are performed for various values of the parameter Fj which characterizes the
present problem and graphs for the velocity, temperature, skin friction and heat transfer
coefficients are presented. In considering these results it should be mentioned that Fj — co
corresponds to purely forced convection.

When the problems of the boundary layer are seen to have steady solutions with pos-
itive skin friction, separation would not occur and unsteady flows would approach the
steady flow as a limit of time ¢ — co. An unsteady flow at the forward stagnation point
is cited as an example of such problems. So, the values of the skin friction and heat trans-
fer coefficients for small times we have extrapolated to infinite time. It should be pointed
out that a theoretical study of the effect of a magnetic field on the transient phenomena
to the steady flow near the forward stagnation point of an infinite plane wall was performed
by KATAGIRI (1969) by a direct numerical integration of the unsteady boundary-layer
equations.

2. Basic equation

The curvilinear orthogonal coordinate system and notations adopted for this analysis
are shown in Fig. 1. The arc length x is measured along the surface of the cylinder and

Tw>Tee
st

F1G. 1. Coordinate system.

has its initial value of zero at the lower stagnation point, and y is the normal distance from
the surface.

If the effects of the component of the buoyancy forces normal to the cylinder are
neglected and if the fluid properties are assumed comstant and viscous dissipation is
disregarded, the governing equations for unsteady and incompressible flow are

ou dv
@2.1) =tz =0
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ou ou ou 5U 62:.:
1(3:"2 ?r"*'“'a?"""a‘" "aj——}'U 6 ——5 1Pg(T-T,)sin®D,

oT T oT v T

xS g
The plus-minus signs in the buoyancy term correspond to assisting and opposing flows,
respectively.

The specification of the initial and the boundary conditions is necessary to complete
the statement of the problem. It is as follows. For ¢t < 0, the flow is assumed to re-
main at rest. Atz = 0, the flow starts to move impulsively with the velocity U(¢, x). In addi-
tion, the temperature of the cylinder is suddenly increased from that of the surrounding
fluid at time # = 0. Formally, these conditions may be stated as

t<0: ult,x,y)=0, T, x,y)=T,

everywhere;
@2 t=0: u=UQ,x), T=T Rl
' t>0: u=v=0, T=T,=const at y=0,
u—U, T->T, as y - oo.

Having thus completed the statement of the problem, attention may next be directed
toward finding a solution. The following dimensionless variables are introduced

=UlUy, u* =ulUy, v*=0yYRp/Uy, T*=T-T)/(Tu—Ty),
= tUy/D, x* =x/D, y* =yyRp/D.
In terms of these variables Egs. (2.1) become
u
ox Oy

ou du ou oU oU 0%*u | Tsin®

@4 ata "y " atVmtyt R
o, oT, or 10T
ot ox dy o dy*’

2.3)

=0’

where, for the sake of simplicity, the cross in Egs. (2.4) has been omitted and

(2.5) Fp = Uy/[fg(T,,— Ts) DI'* = Rp|Y/Gp

is the buoyancy parameter.
The transformations (2.3) give the boundary conditions as

t<0: wu(t,x,yp)=0, T@x,y)= 0}
everywhere;
2.6) t=0: u=1U({,x), T=0
' t>0: u=v=0, T=1 at y=0,

u—-U, T-0 as y— oo.
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3. Method of solution

We shall restrict our study to the case when the free stream is independent of time.
Near the stagnation point, where x is small, the following approximations can be used
3.1) sin® ~ ®=2x and U =z 4x.

If we now define the stream function ¥ by

lik'd
(3.2) u i and o = . o
and we write
33 V@, x,y) =8xy/oft,m), T(t,) = h(t, ),
the Egs. (2.4) may be written

&f T2 L SR —16:{1—(3{%) +f azf+h,’8 1‘

on? on? ot o

G4) 5% d

L Ph, Oh Ok _ o

c on? n an o o’
with the boundary conditions

=§—f=0,h=l at =0,

G.5) o 1

Eg--’l’ h—-0 as n-oo.

We look for a solution of the Egs. (3.4) by an expansion of f(¢, %) and (¢, ) in
power of ¢

3.6) fie, ) = D @Y, ke, = Y @)hn).
i=o i=o0
Expressions (3.6) give the following differential equations and boundary conditions:
o +2nfy = -}hgnnh:, =0,

fo=f6=0, ho=1 at 9=0 fo-1, h -0 as #5-oo;
U+ 2nfl'—4f] = —4(1 —f* +fofo' L ho[8 F3),
1 " ’ ’
G.7) ?hl +2nhi—4h, = —4f,hg,

fi=fi=h =0 at =0, f{-»0, h -0 as n-—oc;

2l —ifi = —420'.., VA RS s 2;: hicss

j=0

%h;’+2nh;—4ihf - —42)‘.-_;_1!::.
Jj=0

f}*_—f‘i'=}?i=0 at ‘D}:O, f'i"—PO, k‘—>0 as n — oo,
foriz 2.
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The system of linear differential equations (3.7) may be solved successively in a manner
of analytical procedures proposed by BLAsSIUS (1908) or by GOLDSTEIN and ROSENHEAD
(1936). However, the solutions of higher order equations may be supposed to have
complicated forms and it is much troublesome and laborious work to obtain solutions
in an analytical form. In this paper, we attempt to obtain analytical solutions up to
the third order of approximation. In order to simplify the mathematical description,
throughout the remainder of the analysis o is taken as unity although the same ideas
hold for different values. Thus the solution of (3.7) up to the third order of approximation,
without going into details, is

fo(n) = erfn, fo(nl—nerfﬂ+' (e =1), ho(n) = 1—erfy,
fitn) = w(1+——)(1+2?}2)+(— E)[(l+2n’)erfﬁr+ ‘/_ ”]
+((qz—-i—)erfzn+—';=ne"’=erfq+~i—e'2”2—-;;e
+li4F2( 2erfy + I/_ne ”_n? )
TR PV  NIUE Y] (B A I,
+(—,;-n ;q)erfiw T [(2 --%-)e 2]erfn+::g erf (Y 27)
+3—1—9}e‘2”z+n_ Flz[ 1213 erfn+ 12;_’; (ﬂz—%)e""——i%f

; 4 :
*“('r)—(': +2)erf’n+-'f~ne"erfn (2 = )[(l+2n’)erfq+'/_ 'i]

4
e —-r’_____ 2
+ prd o (1+29%),

" o 1 2 1 4 3 4 1 —n2 1 1 2
3.8 =" —n"—= rf e —p3 n 4
B8  fi(m) (4 n 313)8 n+[ (Al L el U
1 2\, 4 3 01 .1 1 1.: 1.0Las
+(2+3“)7; E" E‘EE*FT%(_E"I” —3" )]"rf n

1 1 /1 2 23
- 14 2y - 22 il -.-i_ 2y ,—n2
+{ 3ﬂ( +5n%)e +|/§(2+3“)(’} + 67?)8 (1 2n*)e”

4 4 2 1 1 8
_—3'/3_; (l+—3;)7?+§i[ 8'/ ( n++ ??) 8(1_33)7?3
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11 8 9y3 3
s 16(1+3 )]}erfq-i——i:)—“-—ﬁ+12n’+4q“)erf(|/3n)

lﬁf e~"erf () 2 20) + 3557 m ——= (1334 5493)e " + 31 [(”?45:’ 7?
4 e —-2112 1 3
] G | e [ i o

4 8
— e P+r——0 =i Sl e 2y ,— 292
e | i B e R

_ L4y a2 pm L2, L 1
ay=|\2 _3::" i 157 3w aym 6n

4 16 a1 26+81Y3 16
+(45:n: 35 T 180:; F=)(3+12’7 4y ”[24 180x 135

i(%_wﬁ’ﬂ) - ][(3-{-127} Hnterty (5q+2q3)e-v‘]

__l?.21343 2 3_',,1_14_‘
hy(n) = -i(j‘—+71} +~3—n )erf 1}+|: ——3'/&. (Typ+61%)e 6 7 =7

i, B & _ Gf 4t ig f 1., 1. VB
+5(3 E)" Wa 3(3 n)iTg(“sz‘?’f ﬁ”)]"‘f”

+{————(8+1lq’)e“”"+3——-—[(l ) (13 ) 3] e

2 2 2l =1 __ 16 2 8 4 1 3 11
u(“s'?)" K +3,/;(1 3::)" 33'*,/,,;”('3" o

213 T
x erfn + )3 (3+121}2+44;‘)erf(n|/§)—16'/2 e~ erf(nY/2)
207 157
1 1 4 8
ire—— : N~y | —_n2 |29
+ %037 (9719 +3785%)e 3" + “[ 3]/5?}+(1 e )n ]e

el B el 2o

1 1
— ;31 s —-n?
T e e |

8 16 7 oo | 5 206—-189y/3
( 57 T 1522 T 180z Fz)(””"? +4'”+[72+ 1807

141
15:z= i(% 180:;) Fz][3+12’? +4r:‘Jerfn+'/—(5n+2n3)e""]
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where erfy is the error function defined by

(3.9

From (3.8) we have

n
erfy = %—fe“’ds.
b

3/(0) = 2 _ 1128379, Bo(0) = ——2— = —4.128379,
Y Vr
0 [E A I SRS P
! ]/ 3:!:) 4yn F3 - F
1(0) = —%(1—58;) ~0-170581,
(3.10) v = L (11+s9—103;/§_ 256 )+ 1 (_13 62 )_1_
T VA 15z 13527 | = /7 \&8 ~ 45z | F}
= —0-248091¢(—0.oz4147)%,
F3
. 1 (23 451-252)/3 256 28 )1
kz(o)‘“ e peya = 2
Y= \18 157 1572 ]/,,; 16 457 ) F3

4. Discussions

- w-ososni(—o'oos?n)?f-f
XD

To clarify the influence of the buoyancy forces on the flow, the velocity and temperature
profiles versus y are presented in Figs. 2—5 for Fp = 0.3 and oo, -respectively. It will be
noted from these graphs that the effects of buoyancy forces are comparatively small. They
decrease the velocity profiles in assisting flow and increase them in opposing flow, while
the temperature profiles are increasing in assisting flow and decreasing in opposing flow.

A ufiax
-
10—
aB -
aj' —
M b—
/i -~
/ = Assisting Assisting
az = === Opposing oz . === Opposing
! L L 1 I ! f i I
L 1 2 ;‘ 0 1 2 _;"

F1a. 2. Velocity pfofiles for 4r = 0.25.

FIG. 3. Velocity profiles for 4t = 0.64.
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- Tm/ Tw‘Tan T-Tln/ Tw'Tm
10 10
Assisting Assisting
08 —=—= Opposing a8 === (Opposing
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04 04—
02 azl-
o -~

9 9’7 0 1 2 ;":

F1G. 4. Temperature profiles for 41 = 0.25. Fi1G. 5. Temperature profiles for 4t = 0.64.

Once the distributions of ¥ and T are known, any other required property of the flow
can be determined. Thus the coefficients of skin friction and heat transfer at the wall are

given by
C T e (ﬁfi = RO+ @S O+ @O+ ...}
2y/4t \on),eo 20/a1

= 0.564189(4r)~*/*+ (0803639 +0-070523 %;(4!)”2
b

4.1) -(0-12404510-0120?31:;,1—3)(41‘)3"’+ s
— 1 oh 1
N, R = e R e ——— h’ 0 4 h' 0 4 zhf O wer
oW Ro =~ (&z)m i (O AR O+ RO+ .

= 1~128379(4:‘)‘“"+0-170581(4:)”’+(0-08081?:1:0-%67?1%) @2+ ...
D

The coefficients of skin friction and heat transfer are plotted versus time in Figs. 6:and 7
for different values of Fp, the buoyancy parameter. They are singular at ¢ = 0 because
the flow was started impulsively and the temperature of the cylinder is suddenly increased.
It is observed that the solutions for the skin friction and heat transfer are valid only for
small values of 7. Further, Figs. 6 and 7 show that the buoyancy forces increase the skin
friction and heat transfer in assisting flow and decrease them in opposing flow. Neverthe-
less, it is worth noting that the buoyancy forces have a completely negligible effect on the
flow when F}, is greater than 5 (that is, Gp/R}3 less than 0.04).

Although series (4.1) hold only for a small time, they may be used to estimate values
for the steady problem (¢ — oo). The procedure for extrapolating to infinite time was
devised by SHANKS (1955) and has successfully been applied to several problems in fluid
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Cr/VRy *Nﬂ/‘/@
4 8
—— Assisting — Assisting
———= Opposing === Opposing
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FiG. 6. Results for the skin friction coefficient. FiG. 7. Results for the heat transfer coefficient.

dynamics by VAN DYKE (1964) and recently for free convection by ELLIOTT (1970). In order
to use this technique, the series (4.1) are first expressed in the form

(‘“ )an/R;— (0){1+( 1 0) —7})(4:)

1+41 O
£0 L : ( 10 _ 7O _ i) s }
4.2) i 0'(0) (0) 8)( e f20)  2fa©0y 16 (4 ciagy
hi0) 1
(1+4:) No/y/Rp = *"0(0){1+( 7o) 5) (@r)

1O kO  3), . (3KO KO _ 5}, |
{2y + 3) 0+ (e~ 2y - 5o+
Applying Shanks’s non-linear transformation to the power series on the right-hand
side of expressions (4.2) yields single rational fractions. These rational fractions remain
bounded at infinite time and so give an estimate of the steady state values. (As is known,
Shanks’s transformation requires not necessarily the convergence of a series). The values
for the-skin friction and heat transfer as t — co are given in Table 1 for various values

Table 1. Values of C;)/Rp and Np}/ Rp for infinite time

CrVRp | NpVRp
Fp | assisting : opposing assisting opposing
0.3 2.604116 0.248243 0.807913 0.683792
0.5 1.848012 1.041985 0.778989 0.726670
1.0 1.546899 1.284005 0.763906 0.749802
5.0 1.447496 1.438582 0.756234 0.755669
oo 1.443196 1.443196 0,756014 0.756014
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of Fp. By an examination on this Table, it is found that for F, —» oo (purely forced con-
vection), the results for the skin friction and heat transfer are generally in agreement with
those of SIBULKIN (1962), and HAYDAY and BowLus (1967) for the steady flow near a two-
dimensional Stagnation point. Presumably better agreement exists for higher terms in (4.2).
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