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Flow over an oscillating porous plate 

R. S. SHARMA (JAIPUR) 

IN THE PRESENT work damped oscillatory motion of a porous rigid plate in the fluid of infinite 
extent has been studied by using the Laplace transform technique. 

W pracy rozwai:any jest wytlumiony oscyluj'lCY ruch porowatej sztywnej plyty w cieczy o nie
skonczonej rozci'lglosci przy ui:yciu techniki transformacyjnej Laplace'a. 

B pa6oTe paccMaTpHBaeTcH 3aTyXaJOil\ee OCI..UiJIJIHPYIOil\ee ~BHH<eHHe nopHCTOii mecrKoii miH
Thi B HeorpaHWieHHOH >I<H~KOCTH npH HCllOJih30BaHHH TeXHHKH npeo6pa30BaHHH Jlannaca. 

1. Introduction 

NICOLL, et a/ [1] have shown that analysis of laminar motion of fluid near an oscillating 
porous infinite plane is important because the Navier-Stokes equation yields an exact so
lution, and the decay of the amplitude of the oscillations with distance from the surface, 
and the effect of mass transfer on this decay gives a quantitative basis from which the 
effect of mass transfer on the turbulent boundary layer can be determined. This paper 
also generalized van DRIEST's [2] hypothesis that, if the effect of viscous damping on mixing
length distribution is also taken into account, then it is possible to obtain the correct form 
of expression for velocity profiles. This generalization is for steady state flow conditions 
only. 

The problem of oscilJatory flow of an infinite fluid near a porous plate has a practical 
application to Fourdrinier paper machine. DEBLER and MONTGOMERY [3] have given the 
analysis of the flow over an osciJlating plate with suction or with an intermediate film. 
In this analysis, the initial condition that the plane is at rest at t = 0 is not satisfied. This 
analysis is valid for suction and moderate values of blowing. 

In the present work, damped osciJlatory motion of a porous rigid plane in an infinite 
viscous fluid, with suction or blowing, is considered. It is shown that restrictions imposed 
in the DEBLER and MONTGOMERY [3] work are not valid and present analysis can be ap
plied with any suction or blowing value in order to get the same results. The particular cases 
of the present analysis are in agreement with WATSON [4]. 

2. Basic equations 

Let x and y denote the space coordinates measured parallel and normal to a porous 
plane which is initially (t = 0) at rest. It is further assumed that the fluid velocity compo
nents in the direction of x and y be u and v, respectively. The fluid is assumed to be in
compressible and homogeneous. The fluid above the porous plane is taken to be infinite 
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116 R.S. SHARMA 

in all directions and motion takes place in a direction parallel to x~axis. The oscillating 
plane is taken to be smooth and "no slip" condition exists at the surface of the plane. 

Due to porosity of the plane there exists a constant velocity V0 in a direction normal 
to the plane. The Navier-Stokes equation expressing the conservation of momentum in 
x-direction can be writte·n as 

(2.1) 

where v is the kinematic viscosity. The equation of continuity is satisfied identically. The 
plane is assumed to perform exponentially decaying oscillations. The initial and boundary 
conditions for the problem are 

(2.2) 

u(y, o-) = o, 
u(O, t) = U 0 exp { (-a+ ib) t} . , 

u(cx:>, t) = 0, 

where U 0 is the velocity amplitude of the oscillating plane, a is the damping parameter 
and b denotes the frequency of the oscillation. 

We define the following non-dimensional variables 

(2.3) u = u/U0 , y = yU0 /v, T = Ufit/v. 

The Eqs (2.1) and (2.3) give 

(2.4) 

where the mass transfer parameter across the plane is 

(2.5) ')' = Vo/Uo. 

The corresponding initial and boundary conditions are 

(2.6) 

u(ji, o-) = o, 

u(O, T) = exp{( -k2 +iw)T}, 

u(cx:>, T} = o, 
where k 2 = av/Ufi and w = bv/Ufi. 

Defining La place transform of u as 
00 

U = f ue-PTJT, 
0 

and introducing the condition Lt ue-PT = 0, The Eq. (2.4) becomes 
T--+eo 

(2.7) 

with the boundary conditions 

(2.8) U(cx:>) = 0, U(O) = I/{p+k2 -iw). 
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The solution of the Eq. (2.7) with the boundary conditions given by Eq. (2.8) is 

(2.9) U = (l/k2 +p-iw)exp(~- ~ J!'y2 +4p )y. 
Composite-product rule [5] is used to obtain the inverse of the Eq. (2.9) and thus velocity 
of plate u at time T is 

1 

(2.10) U = (jj2n2)e<Ri+io>T-k.1·T>J(T, ex, yj2), 

where R = y /2 and 
1 

(2.11) J(T, rx, Y /2) = ;,~ { e•' erfc { y:~ -<X~) u' erfc{ ~~ + ari)}, 
where ex is a function of mass transfer parameter, y defined by 

(2.12) ex = ± f (p+ifJ'), 

where 

(2.13) 

and 

1 1 

(2.14) _ [{( kl )2 rol }2 ( kl )]2 fJ' = (1/}12) 1- R2 + R' - 1- R2 • 

The sign to be taken in the Eq. (2.12) is that of V0 , namely positive for blowing and 
negative for suction. 

The local velocity u given by the Eq. (2.10) is plotted at various values of roT with R as 
a parameter and shown in Figs. 1, 2, 3. Values of roT chosen for these plots are n/4, n/2 

2.0 
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-160 

FIG. 3. 

and 3n/4 and w = 1. For blowing, the velocity envelope increases upto smaller values of 
y and then decays exponentially. For suction rapid decay starts from y = 0 itself. This 
feature is as expected. The velocity decays more rapidly for low values of T and slowly 
for higher values of T. Also magnitude of u at y = 0 is independent of R. 

3. Node velocity 

Node or phase velocity is given by 

(3.1) 
d -

v* = dT [y(U = 0)]. 

The Eqs. (2.10) and (3.1) give 

(3.2) v* = (Y/2T)lf[aV nT erfc(yf2V T- aJlT)e<Y12'
1
i-ayr)

2 

+ 1]. 

A graph for v* against IRI is shown in Fig. 4. Node velocity gives the effects of mass 
transfer on the amplitude envelope. Effects of mass transfer produce some oscillations 
at low value of IRI and then decays exponentially. 
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4. Drag coeft"cient 

The drag coefficient is defined by 

12 1.6 

FIG. 4. 

(4.1) iw = [(a~)] . ay . i=o 

y-1 
cu-1 
(J)T•Jr/4 

2.0 

The Eqs (2.10) and (4.1) yield the drag coefficient for time T as 
1 1 

(4.2) iw = - [(nn-2e-R2T+Re-<k2-i(l))T +e-<k2-i(l)>T(R2-k2+iw)2 x 

119 

28 /RI 

1 1 

x erf(R2 - k 2 + iw )2T2] . 

FIG. 5. 

The drag coefficient obtained from Eq. (4.2) is valid for T :/= 0. Negative sign of R in this 
equation is for blowing and positive for suction. The drag coefficient, r w is plotted for 
various values of R with T as a parameter. For low values of R, iw, increases and then 
decreases exponentially (Fig. 5). The decay rate is rapid for rapid oscillations. 
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Figure 6 shows the variation of Tco for suction. It is noticed that values of Tco for roT= 
n/2 for suction and for blowing are same. The drag coefficient at roT= n/4 is negative 
and might cause back flow of ftuid. For roT= 3nf4, Tco increases exponentially. 

FIG. 6. 

When k2 :t= R2 and ro ~ R2 -k2 , real part of the Eq. (4.2) can be expressed as 

(4.3) Tw = -e-lc2TB(ro, roT, R, k, T)sin[roT+ cx{ro, roT, R, k, 7')], 

where 

and 

(4.4) 

and 

1 1 1 

B(ro, roT, R, k, T) = {[- (2ro)2(ro7')]2 + [(2ro)2S(ro7')+R+Q]2 }2, 

1 

cx(ro, ruT, R, k, T) = tan- 1 (2ro)lS(ru~+R+Q , 

- 2( ro )2 C( roT) 

1 
Q = (nT) -2 e-<R2-Ic2)T secroT, 

where C and S are Fresnels integrals. 
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For large values ofT, the Eq. (4.4) simplifies to 
1 1 

B( ru, R) = [ ru + (2ru )2 ( + R) + R2]2 , 
and 

1 

(4.5) 
(ru/2)2 

1X(ru, R) = n/2+tan- 1 
1 1 . 

( ru /2)2 =t (R)2 

For R = 1, the Eq. (4.5) reduces to the results by WATSON [4] and also shows that Tw 

leads ruT to n/2. The different values of phase angle in the present work are due to the 
motion of the plane in infinite stationary fluid. 

For zero mass transfer or for solid plate (R = 0), the Eq. (4.5) gives the results 
obtained by STUART [6]. The phase between ru and ruT is 3n/4. 

For suction or blowing, the Eq. (4.3) gives Tw as 

(4.6) 

where 

and 

1 1 

A= -e-A:2 T[ru+2w(+R)(ru/2)2+R2]2, 

1 

(ru/2)2 (} = tan-1 1 

(ru/2)2+R 

the alternate sign being opposite to that of V0 • For zero mass transfer, real part of the Eq. 
(4.6) is 

Putting fw = ylw/U0 , 

(4.7) Tw = e-A:ZT({ijP/U0)sin{ruT-n/4). 

The magnitude of drag coefficient is e-tzrJ!bwfU0 and phase difference between shear and 
velocity is n/4. For k 2 = 0, "the Eq. (4.7) reduces to the result of STOKES. 

5. Power 

The power input to the fluid per cycle is 

ln/t» 

(5.1) P = - j u(O, T)(-rw}i=odT. 
0 

Substituting values of u(O, T) from the Eq. (2.6) and (-rw)7=o from the Eq. (4.2), the 
expression for P is 

(5.2) p = -<V (R2 + k'- iw )/j/n) ( erf vt: (R2 + k 2 -tw)} + 2(~: !lw) 

_ e-~;::·:~;·l [ U+f(Ri-k'+iw)(enf{:: (R2 -k'+iw)}] · 
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FIG. 7. 
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FIG. 8. 

fhe Eq. (5.2) is plotted for various values of R taking w as parameter. Figure 7 shows 
the variation of power for blowing and Fig. 8 for suction. The power input increas· 
es with w for suction but decreases for blowing. P also increases exponentially with R 
but the rate of increase is slower in case of suction than for blowing. 
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