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Stability criterion of a dynamic system described by equations with
a deviated argument

M. PODOWSKI (WARSZAWA)

A CERTAIN type of a set of integro-differential equations is analyzed. By transforming the sys-
tem into an operator equation determined in a BANACH space [5], the conditions are given
under which the solution is either bounded in the interval <0, o), or tends to zero for r — .
Using the results derived, the criterion of asymptotic global stability in the sense of Lapunov
are formulated with respect to a set of equations with a deviated argument.

Przeprowadzono analize pewnego typu ukladu rownani réimiczkowo-calkowych. Przeksztal-
cajac rozpatrywany uklad w réwnanie operatorowe okre§lone w przestrzeni Banacha [5], po-
dano warunki, przy spelnieniu ktérych jego rozwiazanie jest ograniczone w przedziale <0, 0),
bad? tez zbieine do zera dla t — oo. W oparciu o otrzymane rezultaty sformulowano kryterium
statecznosci asymptotycznej globalnej w sensie Lapunowa dla ukfadu réwnan z odchylonym

argumentem.

TIpoBeQieH aHATH3 HEKOTOPOrO THNA CHCTEMb] HHTErpo-muddepeHIHANBHEIX ypaBHeHuit. ITpe-
0o0pasyA pacCMATDHBAEMYIO CHCTEMY B ONEPAaTOPHOE YpaBHEHHE, ONpEAeNcHHOe B DaHAXOBOM
TpoCTpaHcTBe [5], HalTcA YCIOBHA, IPH YAOBJIETBOPEHHH KOTOPHIM €ro pellieHHe OrpaHHYeHo
B uHTepBane {0, 00), WIN e CTPEMHTCA K HYJIO JAns f— 0. OnHpascs Ha MOJTy4YeHHBIE pe-
3y/mTaThl chopMynHEpoBaH KpETepHil r1ofaibHON acCHMITOTHUYECKON YCTOHYMBOCTH B CMBICTE
JIanyHoBa ANA CHCTEMBI YPABHEHHWH C OTKJIOHAIOLIMMCA apTryMEHTOM.

1. Introduction

LET the dynamic system be described by the following system of differential equations

d : M M
(Il) ?};'_ Z‘plmxm(t)_ Zqimxm(t"rim)

m=1

(N

m=1
) M
2 D s X B OV B 0 (P00 M
p=2

1 my=

[

mi

Analysis of stability of such a system of equations (in the sense of LAPUNOV [1]) is connected
with substantial difficulties. The method most frequently applied consists in seeking the
Lapunov functional, although this method yields practical results in very simple cases
only. It may be shown, however, that in the case of such systems (or even those of a much
more general class), another method may successfully be used [2, 3] which consists in
transforming the system considered into the form of an operator equation determined in
a certain Banach space.



126 M. PoDOWSK1

2. Analysis of the set of integro-differential equations

The system (1.1) constitutes a particular case of a system having the following vec-
torial form

@.1) B _px()- [ d0@)xt=1) = y)+ Y 16,270,
0

=2
Here
x0) = {x(0)}, ¥ ={@®} P={pm} Q@)= {qm()}
with i,m =1, ..., M, and the operators G, = {Gp}i-1,. ., are defined by one of
the following formulae:

M M
@2) [Grix?®) = ) oo Y Gpimy . mp(0) X, (1) . Xy 0),
my=1 mp=1
M M [ r
23) [Gpux?l() = D oo X [ oo [ Kegimy cempt, Tas oo T
my=1 mp=10 0

% X (T1) o Xmy(Tp) d7; ... dTp,

or by their combinations; it should be remembered that
M tm

2.4) fdQ(t)x(r—r) S {Zf Aqum(T) Xm(t — T)}(:-I, M)’
0

m=10

Each of the functions ¢,,,(¢) has a bounded variation in the interval {0, i) : Var g;, < c0.
€0, tim)
Let the Eq. (2.1) describe the action of a certain dynamic system for ¢ > 0, x(¢) being

equal to a known continuous function f(t) for t e (—T,,0>; here T, = max fyp. Let

nm
moreover y(¢) be a continuous and bounded function for ¢ € {0, o).
Let us consider the linear part of Eq. (2.1), that is

dx

T
(2.5) = —Px()- [ do()x(t=7) = yt) for 1> 0.
0

On defining the functions g;,(¢) in the following manner:

' qtm(‘) for IE<0’ t!m)s

0 bl = Ln,.. (tm) for &> tin,
we may easily observe that

tim 4
X)) [ 44D 2n(t=7) = [ dgin(x) Xt = D) = im(2),

0 0
where

fim

(28) u (t) = ""f dqtm('r)fm(r_t) for z E(‘)’fim):

0 for > tn.
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The equation is now true

2.9) Var ¢, = Var qim.
<0, x) <0, tim)

Substituting now

0.:(t) = {gim(®)} G, m=1, ..., >

M
u(t) = lz Him(’)}(;:;. o M)
m=1
into the Eq. (2.5) we have

dx

]
(2.10) — —Px(0)- [ do,()x(t—1) = yO)+u@t) for 1> 0.
0

Here
M

1/2
sup [lu())ll> < II1{ Var gin}aml2-{ 2T sup 11"
120 {0, tim) i=1 E{—To0}

him [Ju(r)]l, = 0.

=
Under the assumption that f{z) is continuous and bounded for ¢ € (— oo, 0}, the consid-
erations presented above remain valid also in the case T, = oco.
In what follows, the notion of Laplace-Stieltjes transforms will be used; the transform
is defined as follows: Let £(¢) be a function defined for t € (— o0, + c0), equal to zero for

t < 0 and having a bounded variation for ¢t 2 0, (Var A < o). The L-S transform of
{0,00)

that function is the function H(s) given by the formula
H(s) = f e *dh(r) for Res=0.
0

By means of this definition, the following lemma may be proved:
LEMMA. If G(t) = {gim(1)} t,m=1,--.,m) is the matrix of a functions of bounded variation and

_ _ 2 a7
without singularities, and if inf |detG(s)| > 0, where G(s) = f e *dG(t) = { f e“'dg,..,(t)}
Resz0 o 0

(i,my

then there exists exactly one matrix H(t) = {him(t)}u,mo0f a functions of boundedvariation
and without the singular part, which satisfies the condition

G(s)-H(s) =1 for Res>0.
Here H(s) = f e *dH(t), and I — unit matrix.
d
The proof follows directly from the following theorem [7]:

ol

THEOREM 1. If g(t) is a function of finite variation and non-singular, and if inf | | e='dg(r)|
Res=0

> 0, then there exists exactly one function h(t), also of finite variation and non-singular,

such that [ e~*dg(t). [ e='dh(t) = 1for Res > 0.
0 0
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Taking into account that, according to the assumptions of the lemma, all minors

Win(s) of the matrix G(s) and its determinant are the L-S transforms of functions with
bounded variations, and without the singular parts, it may easily be observed (Theorem 1)
that the functions Him(s) = (—1)"*™W,,(s)[det G(s)]"* have the same property. If we
assume H(s) = {Hin(5)}m) then it is seen that H(s) = [G(s)]"* what concludes the
proof of the lemma.

Let us now consider the Eq. (2.10) under the assumption that u(t) = 0, that is with the
condition x(¢) = 0 for ¢ < 0. In connection with that equation, the following theorem
may be formulated and proved.

THEOREM 2. If

2.11)  |det [sI-P—0,(s)] > 0,
Res»0

where Q(s) is the L-S transform of the matrix Q,(t), then the solution of the Eq. (2.10)
with the condition x(t) = 0 for t < 0 may be represented in the form

2.12) x(t) = [ K(t-)y(2)dr,
0

K(t) being the matrix of functions bounded for t > 0 and convergent to zero with t - o,

“"df [IK(D)||,dt < co.
Proof. Applying formally the Laplace transform to the Eq. (2.10) under the condition
proposed, we obtain
[sT— P—Q, ()X (s) = Y(s).
The latter equation is rewritten in the form

1
s+y

= 1
[s/—P—Q,(9]X(s) = m— Y(s).
It is easily seen that

(1) Matrix G(s) = [sT— P—Q,(s)] is the L-S transform of a matrix of the func-

s+
tion with bounded variation and without the singular part;
(2) For each s such that Re s > 0, the inequality holds true

det{s_ll_y [sI—P—Ql(s)]} > 0;

; 1 _
(3)Hm(25wdet{ = [sI-P-—Ql(s)]} =1.

1
s+y

2 -1
Thus if H(s) ={ [sI—P~@1(s)]} , then there exists such a matrix H() =

= {hm()}a.m that H(s) = [ e~*dH(t), with Var k< oo for every i,m =1, ..., M.
0 €0,0)
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If we now assume

(2.13) K@) = [ e"-9dH(x),
0

then, by means of [4], it is observed that K(¢) possesses the properties stated in the theorem,
what concludes the proof.

From the theorem it follows that the solution of the Eq. (2.10) under the condition
x(t) = f(¢t) for t £ 0 assumes the form

(2.14) x(t) = [ K(t—n)y(x)dv+w().
0
Here
@.15) w(t) = KOO+ [ K(t—nu(2)dr,
o

and the following estimate holds true

sup Ix()ll2 < sugIIK(t)Ilz-Hf(O)llﬁ f IIK(I)IIzdr{suoplly(t)llz+sugllu(t)llz.
> S 0 1z ]

x(t) being at the same time a continuous function [6], and hence x € C¥2, Here C¥2
denotes the Banach space of vector functions which are continuous and bounded for
t > 0 with the norm

[1xll2,c = sup[ > fx.(r)il}m.
130 ° /5

It was shown in [5] that if U is an operator given by

(2.16) [Uxl(r) = [ K(t—)x(z)dr,
0

then U € (CM* —» CM?) and U € (K2 — KM?), KM? being the quotient space with elements
of the class of elements of the CM2 space, differing by a function converging to zero, with
the norm

M
lIxllz.x = lim sup{ ¥ 1x())2} .

Towt2T i=1

Returning now to the Eq. (2.1) we may, by using the previous considerations, transform
that equation to the form

@17 (1) = 2)+ [ Kt—7) ) [G,*)(v)dr,
0 p=2

where

(2.18) 2(t) = [ K(t—2)y(D)de +w().

9 Arch. Mech. Stos, nr 1/75
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Thus if G, (for p = 2, 3, ...) are the multilinear operators transforming the space CM?
(or K™2) into itself, then for each of those spaces the Eq. (2.17) may be written in the
operator form

(2.19) x=2z+U Y G,x".
p=2

Making use of the properties of the corresponding solution (which was analysed in [5]),
it is easily demonstrated that the following theorems hold true.
THEOREM 3. If the following conditions are fulfilled:

(@) Var gy < cofori,m =1, ..., M;

{0t im>

(b) inf |det[sI—P—G,(s)]] > 0;
Resz0
(c) functions @yim,...m,(t) are continuous and bounded for t € 0, c0);
(d) functions kym,...m,(t, Ty, ..., T,) are continuous in the region {(0,00);...;

(0' 00)} ’

14 |
su f _J.| pimgeemplls Tas v Tp) |dTy ... dTp < 00;
fBoO 0

() the radius of convergence of the series is positive:
with reference to operators (2.2)

M M

1/2
Z Supz 2 Zlamml Mn(t)lzl n?,

p=1 1120 i=l my=1  mp=1
with reference to operators (2.3):

w0

1/2
Sl 3 3. 3| j f[k,,ml s B oy d,,,r] ”

p=2 1120 i1 m=1  mp=1

then there exists such a number o, > 0 and a function ¢,(&) continuous, non-decreasing
in £€ (0, «,> and such that ¢,(0) = 0, that for each z € CM? satisfying the inequality
llzll2.c < oy, the Eq. (2.17) has exactly one solution x* € CM? the norm of which satisfies
the estimate

(2.20) [1x*]]2,c < @1(llzll2.0)-
THEOREM 4. If the assumptions of Theorem 3 are fulfilled and for every t, > 0 satisfying

to 1)

im [ . [ Wepimgeeemplts 71y oo 7Ty .. d, =0,
0

I—=w g

there exists such a number o, > 0 and a function @, (defined analogously to ¢,), that if
llzll,x < o, then the Eq. (2.17) possesses in the space KM? exactly one solution x*
satisfying the estimate

2:21) [1x*]12,x < @2(1l2]]2.8)-
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From the latter theorem it follows in particular that if y(¢) converges to zero at ¢ — oo,
then the solution x*(¢) has the same property.

The results derived above may easily be generalized to the case when P = P(f) =
= Py+ Py(t). To that end it is sufficient to replace P with P, in the Eq. (2.11) and to
assume that P,(¢) is a matrix of functions continuous and bounded within the interval
{0, o), and that the inequality holds true

(2.22) sup [ IK(t— )P, (¥)ll,dr < 1.
120

3. Criterion of stability for the equation with a deviated argument

On the basis of the analysis presented in Sec. 2, the criterion of stability in the Lapunov
sense {1] may be formulated with respect to the equation

@3.1) % — Pox(t)—Py()x(r) — f dQ(v)x(t— 1)~ Z‘ [G,x7](t) = 0

p=2

in the case of operators G,; being defined by Eq. (2.2).

It is easily seen that if the Eq. (3.1) is determined for ¢z > t,, then by means of the sub-
stitutions  X(2) = x(t+1,), Py(t) = Py(t+1o), O(t) = O(t) and @y, my (1) = Bpimy--emp
(t+1,), we obtain again the equation in the original form with respect to x(¢), determined
for positive t > 0. Making use of the estimate

G2 lbe< [IKOdt-[Ipllc+l { Yar din} mllz
0 Wlim

{Z sup 1AF}"] +supllK()l - 1501,

=1 1e(=Tp0>

the proof of the following theorem is readily obtained:

THEOREM 5. If the assumptions (a), (b) of Theorem 3 are satisfied, and if there exists such
a number t, that

(1) Py(¢) is a matrix of functions continuous and bounded for f € (t,, c0);

() sup [ 1K= P, (x+1)ll,dv < 1;
1= 0

(3) @yim,---m,(2) are continuous and bounded functions for t €{t;, ®);
(4) the radius of convergence of the series

Soup ¥ Z S gm0}
p=2 '3'li=1 my=1 mp=1

is positive, then the zero solution of the Eq. (3.1) is asymptotically and globally stable.

9
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4. Concluding remarks

It is easily observed that the equations describing the motion of a broad class of me-
chanical systems [in which x might be interpreted as deviations from the position of
equilibrium, or velocities] may be reduced to the form of the Eq. (2.1) [or, in particular,
the Eq. (1.1)]. The theorems formulated in this paper enable us, from the practical point of
view, to determine not only the conditions of stability of the zero solution (position of
equilibrium) of such systems in the Lapunov sense, but also to determine effectively the
allowable deviations of the initial conditions ensuring the boundedness of solutions, or
even their convergence to-zero, and also to estimate the corresponding solutions.
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