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Stability criterion of a dynamic system described by equations with 
a deviated argumoent 

M. PODOWSKI (WARSZAWA) 

A CERTAIN type of a set of integro-differential equations is analyzed. By transforming the sys
tem into an operator equation determined in a BANACH space [5), the conditions are given 
under which the solution is either bounded in the interval (0, oo ), or tends to zero for t -+ oo. 
Using the results derived, the criterion of asymptotic global stability in the sense of Lapunov 
are formulated with respect to a set of equations with a deviated argument. 

Przeprowadzono analiz~ pewnego typu uldadu r6wna.D. r6Zniczkowo-calkowych. Przeksztal
caj~c rozpatrywany uklad w r6wnanie operatorowe okre8lone w przestrzeni Banacha [5], po
dano warunki, przy spelnieniu kt6rych jego rozwi~ie jest ograniczone w przedziale (0, oo), 
b~dz tez zbieme do zera dla t -+ oo. W oparciu o otrzymane rezultaty sformulowano kryterium 
stateczno5ci asymptotycznej globalnej w sensie Lapunowa dla ukladu r6wnan z odchylonym 
argumentem. 

Ilpose~eH aHaJIH3 HeKoroporo THIIa CHCTeMbi mrrerpo-~<I>«Pepe~am.HbiX ypasHemm. Ilpe
o6paayH paccMaTpHBaeMyro CHCTeMy B oneparopHoe ypasHeHHe, onpe~eJieHHoe B 6maxosoM 
npoCTpaHCTBe (5), ~a!OTCH YCJIOBHH, npH y~OBJieTBOpeHHH KOTOpbiM ero peweHHe orpaHHtleHO 
B HH.TepBaJie (0, 00), HJIH >Ke CTpeMHTCH K HYJUO ~ t-+ 00. 0nHpaHCL Ha no.nyqeHHbie pe
aym.TaTbl c<l>oPMYJIHpOBaH KpHTepHit rJio6am.HOH aCHMIIT<>TJNeCKOH yCTOHtmBOCTH B CMbiCJie 
JlHfiYHOBa ~ CHCTeMbl ypaBHeHHH C OTKJIOH.RIOII.UIMCH apryMeHTOM. 

1. Introduction 

LET the dynamic system be described by the following system of differential equations 

d M M 

d~i- 2 PimXm(t)- 2 qimXm(t-fim) 
m=l m=1 

(1.1) 

oo M M 

- J; 2 · ·· 2 aptm 1 ... m/t)Xm1(1) ... Xm,(t) = 0 (i = 1, ... , M). 
P=2mt=l mp=1 

Analysis of stability of such a system of equations (in the sense of LAPUNOV [1]) is connected 
with substantial difficulties. The method most frequently applied consists in seeking the 
Lapunov functional, although this method yields practical results in very simple cases 
only. It may be shown, however, that in the case of such systems (or even those of a much 
more general class), another method may successfully be used [2, 3] which consists in 
transforming the system considered into the form of an operator equation determined in 
a certain Banach space. 
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126 M. PODOWSKI 

2. Analysis of the set of integro-differential equations 

The system (1.1) constitutes a particular case of a system having the following vec
torial form 

(2.1) 
d T oo d; -Px(t)- J dQ(r)x(t-r) = y(t)+ ~ [GPxP(t)]. 

0 p=2 

Here 

x(t) = {xi(t)}, y(t) = {Yi(t)}, P = {Ptm}, Q(t) = {qim{t)} 

with i, m= 1, ... ,M, and the operators GP= {Gp;}(i=t, ... ,M) are defined by one of 
the following formulae: 

M M 

(2.2) [GpixP](t) = ~ ... 11 
apim1 . •. mp(t)Xm 1(1) ... Xmp(t), 

m1=l mp=l 

M M t I 

(2.3) [GpixP](t) = l, ... ~ J ... J kpim 1 .•. mp(t, r 1 , ••• , rp)x 
m1=l mp=l 0 0 

or by their combinations; it should be remembered that 
T M ~m 

(2.4) J dQ(r)x(t-r) ~ {~ J dq,m(r)Xm(t-r)}(i=I, ... M)' 

0 m=IO 

Each of the functions q1m(t) has a bounded variation in the interval (0, i1m) : Var qim < oo. 
(0, ltm) 

Let the Eq. (2.1) describe the action of a certain dynamic system fort > 0, x(t) being 
equal to a known continuous function f(t) for t E <- T0 , 0); here T0 = max t1m. Let 

i,m 
moreover y(t) be a continuous and bounded function for t E (0, oo). 

Let us consider the linear part of Eq. (2.1), that is 

d T 

d
x -Px(t)- J dQ(r)x(t-r) = y(t) for t > 0 . 
t 0 

(2.5) 

On defining the functions q[n(t) in the following manner: 

(2.6) 
, {q,m(t) for te(O, t1m), 

qim(t) = q,m(tim) for t > t,m, 

we may easily observe that 
ltm I 

(2.7) J dq,m(r)xm(t-r) = J dq/m(r)Xm(t-r)-u1m(t), 
0 0 

where 

(2.8) 
for t E (0, ltm), 

for t > ltm· 
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STABILITY CRITERION OF A DYNAMIC SYSTEM 127 

The equation is now true 

(2.9) Var q;m = Var qtm· 
(0, oo) (0, ltm) 

Substituting now 

M 

u(t) = { .r Utm(t)} (i=l, ... ,M)' 

m= I 

into the Eq. (2.5) we have 

I 

(2.10) dx J -d -Px(t)- dQ 1(r)x(t-r) = y(t)+u(t) 
t 0 

for t > 0. 

Here 
M 

sup llu(t)llz ~ 11{ Var qim}(i,m>ll2·{ ~ [ sup lf(t)!Yr
12

• 
t;;,O (O,ftm) i=l te(-To,O) 

lim ll.u(t)llz = 0. 
1-+ 00 

Under the assumption thatf(t) is continuous and bounded for t E (- oo, 0), the consid
erations presented above remain valid also in the case T0 = oo. 

In what follows, the notion of Laplace-Stieltjes transforms will be used; the transform 
is defined as follows: Let h(t) be a function defined for t E (- oo, + oo ), equal to zero for 
t ~ 0 and having a bounded variation for t ~ 0, (Var h < oo). The L-S transform of 

( O,oo) 

that function is the function H(s) given by the formula 

00 

H(s) = J e-st dh(t) for Res ~ 0. 
0 

By means of this definition, the following lemma may be proved: 
LEMMA. If G(t) = {g1m(t) }<t,m=l, ... ,M) is the matrix of a functions of bounded variation and 

00 df 00 

without singu/arities, and if inf ldetG(s)l > 0, where G(s) = J e-s'dG(t) = {J e-s'dg1m(t)}(i,m>' 
Res;;,O 0 0 

then there exists exactly one matrix H(t) = {h1m{t)}<t,m)of afunctionsofboundedvariation 
and without . the singular part, which satisfies the condition 

G(s) · H(s) =I for Res~ 0. 
00 

Here H(s) = J e-s'dH(t), and /-unit matrix. 
0 

The proof follows directly from the following theorem [7]: 
00 

THEOREM 1. If g(t) is afunciionoffinite variation and non-singular, and if inf I J e-s'dg(t) I 
Res;;,O 0 

> 0, then there exists exactly one function h(t), also of finite variation and non-singular, 
00 00 

such that J e-s'dg(t). J e-s'dh(t) = lfor Res~ 0. 
0 0 
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128 M • .PoDOWSICI 

Taking into account that, according to the assumptions of the lemma, all minors 

W,m(s) of the matrix G(s) and its determinant are the L-S transforms of functions with 
bounded variations, and without the singular parts, it may easily be observed (Theorem 1) 

that the functions H,m(s) = ( -1)1+m W1m(s)[det G(s)]- 1 have the same property. If we 

assume ii(s) = {H~m(s)h1,m)' then it is seen that ii(s) = [G(s)]- 1 what concludes the 
proof of the lemma. 

Let us now consider the Eq. (2.10) under the assumption that u(t) = 0, that is with the 
condition x(t) = 0 for t ~ 0. In connection with that equation, the following theorem 
may be formulated and proved. 

THEoREM 2. If 
(2.11) ldet [s/-P-Q1 (s)]l > 0, 

Rea;;.O 

where Q1 (s) is the L-S transform of the matrix Q1 (t), then the solution of the Eq. (2.10) 
with the condition x(t) = 0 for t ~ 0 may be represented in the form 

(2.12) 

t 

x(t) = J K(t--r)y(-r)d-r, 
0 

K(t) being the matrix of functions bounded for t ~ 0 and convergent to zero with t -4 oo, 
CXl 

and J IIK(t)lbdt < oo. 
0 

Proof. Applying formally the Laplace transform to the Eq. (2.10) under the condition 
proposed, we obtain 

[s/-P-Q1(s)]X(s) = Y(s). 

The latter equation is rewritten in the form 

1 - 1 
-- [s/-P-Q1(s)]X(s) = -- Y(s). 
s+y s+y 

It is easily seen that 

(1) Matrix G(s) = - 1
- [si-P-Q1 (s)] is the L-S transform of a matrix of the func

s+y 
tion with bounded variation and without the singular part; 

(2) For each s such that Res~ 0, the inequality holds true 

ldet L~r [si-P- Q,(s)]}l > 0; 

(3) lim det J - 1 
- [si-P- Q1 (s)]} = 1. 

S-+CXJ(Re.r;J~>O) l S + Y 

- { 1 - }-
1 

Thus if H(s) = --[s/-P-Q1(s)] , then 
s+y 

there exists such a matrix H(t) = 
CXl 

= {h,m(t)}(i,m) that ii(s) = J e-stdH(t), with. Var h1m< oo for every i, m= 1, ... ,M. 
0 (O,oo) 
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If we now assume 

(2.13) 
t 

K(t) = f e-Y<t-t>dH( 1:), 
0 

129 

then, by means of [4], it is observed that K(t) possesses the properties stated in the theorem, 
what concludes the proof. 

From the theorem it follows that the solution of the Eq. (2.10) under the condition 
x(t) = f(t) for t ~ 0 assumes the form 

(2.14) 

Here 

(2.15) 

t 

x(t) = J K(t-T)y(T)dT+w(tJ. 
0 

I 

w(t) = K(t)f(O)+ I K(t- 1:)u( 1:)d1:, 
0 

and the fo11owing estimate holds true 
00 

sup llx(t)lb ~ supiiK(t)lb ·11/(0)112 + J IIK(t)lbdt[suplly(t)lb +supllu(t)lb, 
t~O t~O 0 t~O t~O 

x(t) being at the same time a continuous function (6], and hence x e CM 2 • Here CM2 

denotes the Banach space of vector functions which are continuous and bounded for 
t ~ 0 with the norm 

It was shown in [5] that if U is an operator given by 
t 

(2.16) [Ux](t) =I K(t- 1:)x( 1:)d1:, 
0 

then U e (CM2 --+ CM2) and U e (KM2 --+ KM 2), KM 2 being the quotient space with elements 
of the class of elements of the CM2 space, differing by a function converging to zero, with 
the norm 

M 
• J ~ }1/2 

llxlb,K = hm supl L.J lx(t)l 2 
• 

T-+oot~T i=l 

Returning now to the Eq. (2.1) we may, by using the previous considerations, transform 
that equation to the form 

t 00 

(2.17) x(t) = z(t)+ J K(t--r) ~ [Gpx"](-r)d-r, 
0 p=2 

where 

' 
(2.18) z(t) = J K(t--r)y('r)d-r+w(t). 

0 

9 Arch. Mecb. Stos. nr 1175 

http://rcin.org.pl



130 M. PODOWSKI 

Thus if GP (for p = 2, 3, ... ) are the multilinear operators transforming the space CM2 

(or KM2
) into itself, then for each of those spaces the Eq. (2.17) may be written in the 

operator form 
CO 

(2.19) x = z+ U ,2; GpxP. 
P=2 

Making use of the properties of the corresponding solution (which was analysed in [5]), 
it is easily demonstrated that the following theorems hold true. 

THEoREM 3. If the following conditions are fulfilled: 

(a) Var qim < oofor i, m= 1, ... , M; 
(O,tim> 

(b) inf ldet[s/-P-G1 (s)]l > 0; 
Re.r~O 

(c) functions ap1m 1 ... m/t) are continuous and bounded for t e (0, oo); 

(d) functions kp1m 1 ••• mp (t, T 1 , ••• , T p) are continuous in the region { (0, oo); ... ; 

(0, oo)}; 
t t 

sup J ... J lkpiml ... mp(t' T 1' ... ' T p) I dr 1 ... dr p < 00; 
t~O 0 0 

(e) the radius of convergence of the series is positive: 
with reference to operators (2.2) 

.t h~ .t. mt, ... mt, laptm,-··m,(tli'J"2'1'• 

with reference to operators (2.3): 

CO I M M M t t 11/2 .6 ~~~ J: m~ ••• m~ !f ... f lkptm,···m,(f, T,, ... , T,)ldT, ... dT,]
2 

1J'; 

then there exists such a number cx1 > 0 and a function q;1 (~) continuous, non-decreasing 
in ~· e (0, cx1) and such that q;1 (0) = 0, that for each z e CM2 satisfying the inequality 
llzll 2 ,c ~ .cxh the Eq. (2.17) has exactly one solution x* e CM2 the norm of which satisfies 
the estimate 

(2.20) 

THEoREM 4. If the assumptions of Theorem 3 are fulfilled and for every t0 > 0 satisfying 

to to 

lim J ... J lkp1m1 • .. mp(t, T1 , ... , Tp)ldr1 ... drp = 0, 
t-+CO 0 0 

there exists such a number cx2 > 0 and a function q;2 (defined analogously to q;1), that if 
llzll 2 ,x ~ cx2, then the Eq. (2.17) possesses in the space KM2 exactly one solution x* 
satisfying the estimate 

(2.21) 
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STABILITY CRITERION OF A DYNAMIC SYSTEM 131 

From the latter theorem it follows in particular that if y(t) converges to zero at t--+ oo, 
then the solution x*(t) has the same property. 

The results derived above may easily be generalized to the case when P = P(t) = 
= P0 +P1(t). To that end it is sufficient to replace P with P0 in the Eq. (2.11) and to 
assume that P1 (t) is a matrix of functions continuous and bounded within the interval 
(0, oo ), and that the inequality holds true 

t 

(2.22) sup J IIK(t-l)P. (~)llzdT < 1. 
t~O 0 

3. Criterion of stability for the equation with a deviated argument 

On the basis of the analysis presented in Sec. 2, the criterion of stability in the Lapunov 
sense [1] may be formulated with respect to the equation 

(3.1) 
d t 00 

d;- Pox(t)-P1(t)x(t)- J dQ(T)x(t-T)- 2 [GpxP](t) = 0 
0 P=2 

in the case of operators G pt being defined by Eq. (2.2). 
It is easily seen that if the Eq. (3.1) is determined fort > t0 , then by means of the sub

stitutions x(t) = x(t+to), P.(t) = P.(t+to), Q(t) = Q(t) and apimt· .. m,(t) = apimt· .. m, 
(t+ t0 ), we obtain again the equation in the original form with respect to x(t), determined 
for positive t > 0. Making use of the estimate 

00 

(3.2) llzlb,c ~ J IIK(t)ll2dt · [11YII2,c+ll { Var q,m} (t,m)llzx 
0 (O,Iim) 

M 

X {2 sup l.ft(t)l2 f12
] + supjjK(t)ll2. llf(O)II2' 

i=l te(-T0,0) t~O 

the proof of the following theorem is readily obtained: 
THEOREM 5. If the assumptions (a), (b) of Theorem 3 are satisfied, and if there exists such 

a number t 1 that 
(1) P 1 (t) is a matrix of functions continuous and bounded for t e ( t 1 , oo); 

t 

(2)sup J IIK(t-T)P1 (T+t1)ll2dT < 1; 
t~O o 

(3) ap1m 1 ... m,(t) are continuous and bounded functions for t e(t1 , oo); 
(4) the radius of convergence of the series 

is positive, then the zero solution of the Eq. (3.1) is asymptotically and globally stable. 

9* 
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4. Concluding remarks 

It is easily observed that the equations describing the motion of a broad class of me
chanical systems [in which x might be interpreted as <teviations from the position of 
equilibrium, or velocities] may be reduced to the form of the Eq. (2.1) [or, in particular, 
the Eq. (1.1)]. The theorems formulated in this paper enable us, from the practical point of 
view, to determine not only the conditions of stability of the zero solution (position of 
equilibrium) of such systems in the Lapunov sense, but also to determine effectively the 
allowable deviations of the initial conditions ensuring the boundedness of solutions, or 
even their convergence to-~ro, and also to estimate the corresponding solutions. 
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